期刊文献+

Derivatives of Frobenius and Derivatives of Hodge–Tate Weights

原文传递
导出
摘要 In this paper we study the derivatives of Frobenius and the derivatives of Hodge–Tate weights for families of Galois representations with triangulations.We generalize the Fontaine–Mazur L-invariant and use it to build a formula which is a generalization of the Colmez–Greenberg–Stevens formula.For the purpose of proving this formula we show two auxiliary results called projection vanishing property and"projection vanishing implying L-invariants"property.
作者 Bing Yong XIE
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2021年第1期1-34,共34页 数学学报(英文版)
基金 the National Natural Science Foundation of China(Grant No.11671137)。
  • 相关文献

参考文献1

二级参考文献11

  • 1Andreatta F, Iovita A, Pilloni V. On overconvergent Hilbert modular cusp forms. Preprint, 2013.
  • 2Coleman R, Mazur B. The eigencurve: Galois representations in arithmetic algebraic geometry. In: Scholl A 3, Taylor R L, eds. London Math Soc Lecture Note Ser, vol. 254. Cambridge: Cambridge University Press, 1998, 1-113.
  • 3Cohnez P. Invariants et dérivées de valeurs propres de Frobenius. Astérisque, 2010, 331:13-28.
  • 4Colmez P, Fontaine J M. Construction des représentations p-adiques semi-stables. Invent Math, 2000, 140:1-43.
  • 5Greenberg R, Stevens G. p-adic L-functions and p-adic periods of modular forms. Invent Math, 1993, 111:407-447.
  • 6Liu R. Triangulation of refined families. Preprint, 2012.
  • 7Mazur B. On monodromy invariants occurring in global arithmetic, and Fontaine's theory. Contemp Math, 1994, 165: 1-20.
  • 8Mazur B, Tare J, Teitelbaum J. On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent math, 1986, 84:1- 48.
  • 9Saito T. Hilbert modular forms and p-adic Hodge theory. Compos Math, 2009, 145:1081- 1113.
  • 10Schraen B. Representations p-adiques de GL2(L) et catégories dérivées. Israel J Math, 2010, 176: 307-362.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部