期刊文献+

基于遗传算法的割缝衬管防砂多目标优化 被引量:2

Multi-Objective Optimization Design of Slotted Liner for Sand Control based on Genetic Algorithm
原文传递
导出
摘要 割缝衬管防砂是油田重要的防砂方式之一,过去的研究往往专注于一个目标来设计割缝衬管参数,从而在参数设计上不能使多个参数在整体上达到最优.基于遗传算法中的gamultiobj多目标优化算法,以衬管使用寿命、地层流动阻力、产能和衬管强度为目标,建立了割缝衬管防砂优化设计模型,得出了高产能,长使用寿命,低流动阻力的割缝参数防砂的最优组合.结果表明,制定多目标适应性分析,建立评价模型,在给定的取值范围内得到的工艺参数,该技术有助于优选和优化调整防砂方法,提高防砂成功率,增强油田寿命和降低开采成本. Slotted liner sand control is widely applied to the sand control methods.Researchers tended to focus on one goal to design the parameters of slotted liner in the past,which results in that multiple parameters cannot be optimized in overall parameter design.Based on slotted liner service life,formation flow resistance,productivity and liner strength,this paper establishes the optimal design model of slotted liner sand control by gamultiobj algorithm method in the genetic algorithm and then obtains the high-production capacity,long-life,low-flow resistance parameters optimal combination for sand control.The results show that by formulating multi-objective adaptive analysis and establishing an evaluation model,the process parameters are obtained within a given range of values.This technology helps to optimize the sand control method,improve sand control success rate,enhance oilfield life and reduce the mining cost.
作者 袁士宝 白玉 蒋海岩 池建萍 任宗孝 张喻鹏 YUAN Shi-bao;BAI Yu;JIANG Han-yan;CHI Jian-ping;REN Zong-xiao;ZHANG Yu-peng(Petroleum engineering institute of Xi’an shiyou University,Xi'an 710065,China;Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil&Gas Reservoirs(SLAST),Xi'an 710065,China;China Aviation Oil Group Yan’an Gas Company,Yan'an 716000,China;Research Institute of Exploration and Development,Xinjiang Oilfield Company,Karamy 834000,China;Tarim Oilfield Company PetroChina,Korla 841000,China)
出处 《数学的实践与认识》 2021年第2期113-119,共7页 Mathematics in Practice and Theory
基金 国家自然基金项目“基于燃料沉积演化机制的火烧油层启动与控制”(51674198) 国家自然基金青年基金项目“基于边界元方法的致密油藏体积压裂水平井多尺度、多机理耦合流动模型研究”(51804258)。
关键词 割缝衬管 防砂 优化设计 遗传算法 slotted line sand control optimization design genetic algorithm
  • 相关文献

参考文献18

二级参考文献240

共引文献573

同被引文献25

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部