期刊文献+

系列C1化学分子与石墨炔表面相互作用的分子模拟 被引量:2

Molecular Simulations of the Interaction Between C1 Series Chemical Molecules and Graphyne Surface
下载PDF
导出
摘要 利用密度泛函理论计算方法,系统研究了6种C1分子(CH_(4)、CO、CO_(2)、CH_(3)OH、HCHO和HCOOH)与石墨炔的表面相互作用。考察了C1分子的不同吸附构象以及与石墨炔表面的不同作用位点。获得了C1分子在石墨炔表面优势吸附的稳定性结构特征。结果表明,除CH4外,其他C1分子的优势吸附构象均出现在石墨炔大孔C12环处。基于能量分解分析揭示了C1分子与石墨炔纳米片之间的相互作用主要由色散作用主导。此外,还利用约化密度梯度函数直观地刻画了C1分子与石墨炔纳米片之间相互作用的区域和类型。 The interaction of six C1 molecules,CH_(4),CO,CO_(2),CH_(3)OH,HCHO and HCOOH,with surface of graphyne was studied by means of density functional theory calculations.The different configurations of C1 molecule and the adsorption sites of graphyne surface were investigated.The feature for stable structure of C1 molecule on the surface of graphyne was obtained.It was found that the dominant adsorption configurations of C1 molecule appeared in the C12 ring of graphyne nanoflake,except for CH4.Based on the energy decomposition analysis,it was revealed that the interaction between C1 molecule and graphyne is mainly dominated by dispersion interactions.In addition,the region and type of interactions between C1 molecule and graphyne nanoflake were direct imaged by using reduced density gradient function.
作者 刘喆 高红凤 王强 吴勇 乔卫叶 白红存 LIU Zhe;GAO Hongfeng;WANG Qiang;WU Yong;QIAO Weiye;BAI Hongcun(College of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China;College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054000, China)
出处 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2021年第2期330-338,共9页 Acta Petrolei Sinica(Petroleum Processing Section)
基金 国家自然科学基金项目(21863008) 宁夏高等学校一流学科建设项目(NXYLXK2017A04)资助。
关键词 石墨炔 C1分子 密度泛函理论 非共价相互作用 graphyne C1 molecules density functional theory non-covalent interaction
  • 相关文献

参考文献3

二级参考文献96

  • 1Novoselov K S, Geim A K,Morozov S V,Jiang D,Zhang Y,Dubonos S V,Grigorieva I V,Firsov A A.Science,2004,306:666-66.
  • 2Chung D D L.J Mater Sci,2002,37:1475-1489.
  • 3Kr?tschmer W,Lamb L D,Fostiropoulos K,Huffman D R.Nature,1990,347:354-358.
  • 4Wang L,Liu B B,Li H,Yang W,Ding Y,Sinogeikin S V,Meng Y,Liu Z X,Zeng X C,Mao W L.Science,2012,337:825-828.
  • 5Sun A W,Lauher J W,Goroff N S.Science,2006,312:1030-1034.
  • 6Zheng H Y,Li Y J,Liu H B, Yin X D,Li Y L.Chem Soc Rev,2011,40:4506-4524.
  • 7Liu H B,Li Y L,Jiang L,Luo H Y,Xiao S Q,Fang H J,Li H M,Zhu D B,Yu D P,Xu J,Xiang B.J Am Chem Soc,2002,124:13370-13371.
  • 8Hirsch A,Nat Mater,2010,9:868-871.
  • 9Ijima S,Ichihashi T.Nature,1993,363:603-605.
  • 10Haley M M.Pure Appl Chem,2008,80:519-532.

共引文献50

同被引文献38

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部