摘要
AIM:To construct a competent corneal lamellar substitute in order to alleviate the shortage of human corneal donor.METHODS:Rabbit mesenchymal stem cells(MSCs)were isolated from bone marrow and identified by flow cytometric,osteogenic and adipogenic induction.Xenogenic decellularized corneal matrix(XDCM)was generated from dog corneas.MSCs were seeded and cultured on XDCM to construct the tissueengineered cornea.Post-transplantation biocompatibility of engineered corneal graft were tested by animal experiment.Rabbits were divided into two groups then underwent lamellar keratoplasty(LK)with different corneal grafts:1)XDCM group(n=5):XDCM;2)XDCM-MSCs groups(n=4):tissue-engineered cornea made up with XDCM and MSCs.The ocular surface recovery procedure was observed while corneal transparency,neovascularization and epithelium defection were measured and compared.In vivo on focal exam was performed 3 mo postoperatively.RESULTS:Rabbit MSCs were isolated and identified.Flow cytometry demonstrated isolated cells were CD90 positive and CD34,CD45 negative.Osteogenic and adipogenic induction verified their multipotent abilities.MSC-XDCM grafts were constructed and observed.In vivo transplantation showed the neovascularization in XDCMMSC group was much less than that in XDCM group postoperatively.Post-transplant 3-month confocal test showed less nerve regeneration and bigger cell-absent area in XDCM-MSC group.CONCLUSION:This study present a novel corneal tissue-engineered graft that could reduce post-operatively neovascularization and remain transparency,meanwhile shows that co-transplantation of MSCs may help increase corneal transplantation successful rate and enlarge the source range of corneal substitute to overcome cornea donor shortage.
基金
Supported by National Natural Science Foundation of China(No.81700799)
Clinical Medicine Plus X-Young Scholar Project,Peking University。