摘要
在差异空间范畴中研究了光滑纤维化与光滑上纤维化的等价刻画,利用光滑升腾函数与光滑收缩函数,分别证明了一个光滑映射是光滑纤维化的充要条件是其存在相应的光滑升腾函数、是光滑上纤维化的充要条件是其存在相应的光滑收缩函数.同时,证明了光滑纤维化或光滑上纤维化诱导的光滑映射空间之间的光滑映射是光滑纤维化.
The equivalent description of smooth fibration and smooth cofibration was studied in the category of di-ffeological spaces.By applying the smooth lifting function and the smooth retracting function,it was respectively shown that a smooth map is a smooth fibration if and only if it has a corresponding smooth lifting function and a smooth cofibration if and only if it has a corresponding smooth retracting function.Meanwhile,it was also shown that the smooth map between smooth mapping spaces induced by a smooth fibration or a smooth cofibration is again a smooth fibration.
作者
詹妍
赵浩
ZHAN Yan;ZHAO Hao(School of Mathematical Sciences,South China Normal University,Guangzhou 510631,China)
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2021年第1期85-89,共5页
Journal of South China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11671154,12001474)
广东省自然科学基金项目(2020A1515011008)。
关键词
差异空间
光滑纤维化
光滑上纤维化
diffeological space
smooth fibration
smooth cofibration