摘要
应用广义的Leggett-Williams不动点定理,研究了四阶两点边值问题u(4)(t)=f(u(t))(t∈[0,1]),u(0)=u(1)=0,u″(0)=u″(1)=0正解的存在性,其中f:R→[0,+∞)连续.在f满足适当的增长条件下,得到该问题至少存在3个对称正解.
Applying the generalized Leggett-Williams fixed-point theorem,the existence of positive solutions to the fourth-order boundary value problem is studied:u(4)(t)=f(u(t)),t∈[0,1],u(0)=u(1)=0,u″(0)=u″(1)=0,where f:R→[0,+∞) is continuous.Under some conditions on f,there exist at least three symmetric positive solutions.
作者
达举霞
DA Juxia(Changqing College of Lanzhou University of Finance and Economics,Lanzhou 730070,China)
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2021年第1期90-93,共4页
Journal of South China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11561063)。
关键词
四阶边值问题
格林函数
对称正解
锥
fourth-order boundary value problem
Green’s function
symmetric positive solutions
cone