期刊文献+

四阶两点边值问题3个对称正解的存在性 被引量:1

The Existence of Three Symmetric Positive Solutions to A Fourth-Order Two-Point Boundary Value Problem
下载PDF
导出
摘要 应用广义的Leggett-Williams不动点定理,研究了四阶两点边值问题u(4)(t)=f(u(t))(t∈[0,1]),u(0)=u(1)=0,u″(0)=u″(1)=0正解的存在性,其中f:R→[0,+∞)连续.在f满足适当的增长条件下,得到该问题至少存在3个对称正解. Applying the generalized Leggett-Williams fixed-point theorem,the existence of positive solutions to the fourth-order boundary value problem is studied:u(4)(t)=f(u(t)),t∈[0,1],u(0)=u(1)=0,u″(0)=u″(1)=0,where f:R→[0,+∞) is continuous.Under some conditions on f,there exist at least three symmetric positive solutions.
作者 达举霞 DA Juxia(Changqing College of Lanzhou University of Finance and Economics,Lanzhou 730070,China)
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2021年第1期90-93,共4页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11561063)。
关键词 四阶边值问题 格林函数 对称正解 fourth-order boundary value problem Green’s function symmetric positive solutions cone
  • 相关文献

参考文献6

二级参考文献19

  • 1IANNACCI I,NAKASHAMA M N.Nonlinear two-point boundary value problems at resonance without Landesman-Lazer conditions[J].Proc Amer Math Soc,1989,(106):943-952.
  • 2GUPTA C P.Solvability of a boundary value problem with the nonlinearity satisfying a sign condition[J].J Math Anal Appli,1988,(129):231-242.
  • 3HAN Z.An extension of Duo's theorem and its applications[J].Northeastern Math J,1991,(7):480-485.
  • 4KUO.Solvability of a nonlinear two-point boundary value problem at resonance[J].J Differential Equations,1997,(140):1-9.
  • 5HA C W,KUO C.Solvability of a nonlinear two-point boundary value problem at resonance(Ⅱ)[J].Topol Methods Nonlinear Anal,1998,(11):159-168.
  • 6DANCER E N,GUPTA C P.A Lyapunov-type result with application to a Dirichlet-type two-point boundary value problem at resonance[J].Nonlinear Anal,1994,(22):305-318.
  • 7KUO C.Solvability of a nonlinear two-point boundary value problem at resonance(Ⅱ)[J].Nonl Anal TMA,2003,(54):565-573.
  • 8HAN Z.Solvability of nonlinear ordinary differential equation when its associated linear equation has no nontrivial or sign-changing solution[J].Taiwan Residents J of Math,2004,(8):503-513.
  • 9FONDA A,MAWHIN J.Quadratic forms,weighted eigenfunctions and boundary value problems for nonlinear second order ordinary differential equations[J].Proc Royal Soc of Edinburgh,1989,(112A):145-153.
  • 10Graef J R, Yang B. Positive solutions of a nonlinear thirdorder eigenvalue problem [ J ]. Dynamic Systems and Ap-plications, 2006,15 : 97 - 110.

共引文献18

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部