摘要
空间三类角(两条异面直线所成角、直线与平面所成角、二面角)是立体几何的核心内容,也是高考重点考查的内容之一,主要考查三类空间角的求解与大小比较.建立空间直角坐标系,通过空间向量坐标运算,是求解空间三类角问题的常用方法.但此法存在两个缺陷:一是若图形不规则或不容易建立坐标系,则该法常常行不通, 二是运算量较大.本文我们将重点介绍运用"最小(大)角"定理和"三余(正)弦"定理,解决立体几何中的三类角求解问题.由于它不仅关联了线线角、线面角和二面角,而且不需要建立坐标系,运算量也很小,可谓至精至简.