期刊文献+

基于ENLMD与Hilbert包络谱的轴承运行状态故障特征提取 被引量:1

Fault Feature Extraction of Bearing Operation Status Based on ENLMD and Hilbert Envelope Spectrum
下载PDF
导出
摘要 针对局部均值分解(Local Mean Decomposition,LMD)方法实现过程中只部分抑制了端点效应和模态混叠的问题提出集成噪声重构局部均值分解(Ensemble Noise-reconstructed Local MeanDecomposition,ENLMD)方法。该方法对经过LMD分解后待处理的PF分量(Product Function)的集合进行多次重构采样和重构再分解得到最终平均PF分量;然后引入敏感评判指标选取有效的PF分量进行Hilbert包络谱,进而提取滚动轴承的故障特征,识别其运行状态;最后,利用模拟轴承故障仿真信号和凯斯西储大学滚动轴承测试集完成了ENLMD方法与LMD、ELMD等的对比试验。实验结果表明:ENLMD可取得比LMD、ELMD更好的效果,可用于滚动轴承运行状态的故障特征提取。 Ensemble Noise-reconstructed Local Mean Decomposition(ENLMD)solves the problem of only partially suppressing end effect and mode aliasing in Local Mean Decomposition(LMD).First,ENLMD decomposes the set of Product Function(PF)components to be processed after LMD decomposition by refactoring sampling and reconstruction and decomposition to get the final average PF components.Then the sensitive evaluation index is introduced to select the effective PF component for Hilbert envelope spectrum,and then the fault characteristics of rolling bearing are extracted to identify its operation state.Finally,ENLMD is compared with LMD,ELMD and so on by using simulated bearing fault simulation signal and Casey Reserve University rolling bearing test set.The experimental results show that ENLMD can achieve better results than LMD and ELMD,and can be used for fault feature extraction of rolling bearing.
作者 邓佳敏 谢灿华 刘博 俞志群 DENG Jiamin;Xie Canhua;Liu Bo;Yu Zhiqun(Zhejiang Zcontrol Research Co.,Ltd,Hangzhou Zhejiang 310053)
出处 《中国仪器仪表》 2021年第2期42-47,共6页 China Instrumentation
关键词 局部均值分解 敏感评判指标 Hilbert包络谱 故障特征提取 Local mean decomposition(LMD) Sensitive evaluation index Hilbert envelope spectrum Fault feature extraction
  • 相关文献

参考文献5

二级参考文献48

  • 1程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 2李肖博,肖仕武,刘万顺,郑涛.基于形态滤波的变压器电流相关保护方案[J].中国电机工程学报,2006,26(6):8-13. 被引量:23
  • 3Baydar N, Ball A. Detection of gear failures via vibration and acoustics signals using wavelet transform [ J ]. Mechanical Systems and Signal Processing, 2003, 17(4) : 787 -804.
  • 4Zheng H, Li Z, Chen X. Gear fault diagnosis based on continuous wavelet transform[ J]. Mechanical Systems and Signal Processing, 2002, 16(2 -3) : 447 -457.
  • 5Classen T, Mecklenbrauker W. The aliasing problem in discrete-time Wigner distribution[ J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, 31 (5) : 1067 - 1072.
  • 6Lee J H, Kim J, Kim H J. Development of enhanced Wigner- Ville distribution function [ J ]. Mechanical Systems and Signal Processing, 2001, 13 (2) : 367 - 398.
  • 7Cohen L. Time-frequency distribution-a review [ A ]. Proceedings of the IEEE, 1989, 77(7) : 941 -981.
  • 8Mallat S. A theory for multi-resolution decomposition, the wavelet representation [ J]. IEEE Trans. P. A. M. I. , 1989, 11(7) :674 -689.
  • 9Huang N E, Shen Z, Long S R, et al. The Empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proc. R. Soc. Lond. A, 1998, 454:903-995.
  • 10Huang N E, Shen Z, Long S R. A New View of Nonlinear Water Waves: The Hilbert Spectrum[J]. Annu. Rev. Fluid Mech. , 1999, 31:417 -457.

共引文献190

同被引文献32

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部