期刊文献+

Concentration Inequalities for Statistical Inference

原文传递
导出
摘要 This paper gives a review of concentration inequalities which are widely employed in non-asymptotical analyses of mathematical statistics in awide range of settings,fromdistribution-free to distribution-dependent,from sub-Gaussian to sub-exponential,sub-Gamma,and sub-Weibull random variables,and from the mean to the maximum concentration.This review provides results in these settings with some fresh new results.Given the increasing popularity of high-dimensional data and inference,results in the context of high-dimensional linear and Poisson regressions are also provided.We aim to illustrate the concentration inequalities with known constants and to improve existing bounds with sharper constants.
出处 《Communications in Mathematical Research》 CSCD 2021年第1期1-85,共85页 数学研究通讯(英文版)
基金 funded by National Natural Science Foundation of China(Grants 92046021,12071013,12026607,71973005) LMEQF at Peking University.
  • 相关文献

参考文献3

二级参考文献27

  • 1YIN Changming, ZHAO Lincheng & WEI Chengdong School of Mathematics and Information Science, Guangxi University, Manning 530004, China,Department of Statistics and Finance, University of Science and Technology of China, Hefei 230026, China,Department of Mathematics, Guangxi Teacher College, Manning 530001, China.Asymptotic normality and strong consistency of maximum quasi-likelihood estimates in generalized linear models[J].Science China Mathematics,2006,49(2):145-157. 被引量:14
  • 2Shorack, G. R., Wellner, J. A.: Empirical Processes with Applications to Statistics, Wiley, New York, 1986.
  • 3Gine, E., Zinn, J.: Bootstrapping empirical processes. Ann.Probab., 18, 851-869 (1990).
  • 4Vaart, A. W., Wellner, J. A.: Weak Convergence and Empirical Processes, Springer:Verlag, New York, 1996.
  • 5Zhang, D. X., Li G.: Bootstrap approximation for generalized U-processes. Chinese Science Bulletin, 39,1761-1765 (1994).
  • 6Zhang, D. X., Cheng, P.: Random weighting approximation of empirical processes and their applications.Chinese Science Bulletin, 41, 353-357 (1996).
  • 7Zhang, D. X.: Bayesian bootstraps for U-processes, hypothesis tests and convergence of Dirichlet U-processes. Statistica Sinica, 11, 463-478 (2001).
  • 8Yuen, K. C., Zhu, L., Zhang, D. X.: Comparing k cumulative incidence functions through resampling methods. Lifetime Data Analysis, 8, 401-412 (2002).
  • 9Pollard, D.: Convergence of Stochastic Processes, Springer-Verlag, New York, 1984.
  • 10Hoeffding, W.: Probability inequalities for sums of bounded random variables. JASA, 58, 13-30 (1963).

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部