期刊文献+

无限滞后测度泛函微分方程的Ф-变差稳定性 被引量:1

Ф-variational Stability for Measure Functional Differential Equations with Infinite Delay
下载PDF
导出
摘要 利用Φ-有界变差函数,本文讨论了无限滞后测度泛函微分方程的Φ-有界变差解的稳定性.给出了这类方程的Φ-变差稳定、Φ-变差吸引以及渐进Φ-变差稳定的定义,建立了其Φ-有界变差解的Φ-变差稳定性和渐进Φ-变差稳定性的Lyapunov型定理.所得结果是对无限滞后测度泛函微分方程的变差稳定性定理的本质推广. In the paper,by using the boundedΦ-variation function,the stability of the boundedΦ-variation solution to measure functional differential equations with infinite delay is discussed.With respect to this kind of equations,theΦ-variational stability,theΦ-variational attraction and asymptoticallyΦ-variational stability are defined.The Lyapunov type theorems for theΦ-variational stability and asymptoticallyΦ-variational stability of the boundedΦ-variation solutions are established.These results are essential generalization of the current variational stability theorem for measure functional differential equations with infinite delay.
作者 马学敏 张怀德 李宝麟 MA Xue-min;ZHANG Huai-de;LI Bao-lin(Teaching Department of Science,Gansu University of Chinese Medicine,Dingxi 743000;College of Mathematics and Information Science,Northwest Normal University,Lanzhou 730070)
出处 《工程数学学报》 CSCD 北大核心 2021年第1期121-135,共15页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10771171) 甘肃省555创新人才工程(GS-555-CXRC) 西北师范大学科技创新基金(NWNU-KJCXGC-212).
关键词 无限滞后测度泛函微分方程 Φ-有界变差解 Φ-变差稳定性 渐近Φ-变差稳定性 LYAPUNOV函数 measure functional differential equations with infinite delay boundedΦ-variation solution Φ-variational stability asymptoticallyΦ-variational stability Lyapunov function
  • 相关文献

参考文献3

二级参考文献12

  • 1李宝麟,尚德泉.Kurzweil方程Φ-有界变差解的唯一性[J].兰州大学学报(自然科学版),2007,43(2):107-111. 被引量:8
  • 2Kurzweil J. Generalized ordinary differential equations and continuous dependence on a parameter[J]. Czechoslovak Math J, 1957, 7:418-449
  • 3Kurzweil J. Vorel Z.Continuous dependence of solutions of differential equations on a parameter[J]. Czechoslovak Math J, 1957, 23:568-583
  • 4Kurzweil J. Generalized ordinary differential equations[J]. Czechoslovak Math J, 1958, 8:360-389
  • 5Schwabik S. Generalized Ordinary Differential Equations[M]. Singapore: World Scientific, 1992
  • 6Schwabik S. Generalized volterra integral equations[J]. Czechoslovak Math J, 1982, 32:245-270
  • 7Artstein Z. Topological dynamics of ordinary differential equations and Kurzweil equations[J]. J Differential Equations, 1977, 23:224 -243
  • 8Musielak J, Orlicz W. On generalized variation(Ⅰ)[J]. Studia Math, 1959, 18:11-41
  • 9Lesniewz R, Orlicz W. On generalized variation(Ⅱ)[J]. Studia Math, 1973, 45:71-109
  • 10李宝麟,苟海德.滞后型泛函微分方程的有界变差解(英文)[J].数学杂志,2015,35(3):567-578. 被引量:4

共引文献8

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部