期刊文献+

矩阵最大线性无关子块提取研究 被引量:1

The Extraction of the Largest Linearly Independent Block of a Matrix
下载PDF
导出
摘要 针对构造一种基于恰当分裂的预条件子时,需要提取最大线性无关子块和相应的置换矩阵的问题,给出了相应的算法,并通过数值实验验算算法的有效性和提取一些大型稀疏矩阵最大无关子块所需要的CPU运行时间,最后使用此算法构造了基于恰当分裂的预条件子,并使用预条件QMR算法和预条件GMRES算法验证预条件子的有效性. When constructing a preconditioner based on proper splitting,it is necessary to extract the maximal linearly independent block and the corresponding permutation matrix.In this paper,a corresponding algorithm is proposed to solve this problem.Numerical experiments are carried out to verify the effectiveness of the algorithm and the CPU running time required to extract the maximal linearly independent block of some large sparse matrices.Finally,a preconditioner based on proper splitting is constructed by using this algorithm,and two preconditioned QMR algorithms and preconditioned GMRES algorithm are used to verify the ef fectiveness of the preconditioner.
作者 王芳 马艳丽 WANG Fang;MA Yanli(Public Curriculum Department,Anhui Foreign Languages University,Hefei,Anhui 231200;General Education Department,Anhui Xinhua University,Hefei,Anhui 230088)
出处 《玉溪师范学院学报》 2020年第6期6-10,共5页 Journal of Yuxi Normal University
基金 安徽省高校自然科学重点研究项目“求解大型稀疏线性系统的若干迭代算法”(KJ2018A0610) 安徽省高校自然科学重点研究项目“接种和剔除混合控制策略影响下传染病模型的全局稳定性研究及应用”(KJ2019A0875).
关键词 最大线性无关子块 置换矩阵 线性方程组 预条件子 maximal linearly independent block permutation matrices linear equations preconditioner
  • 相关文献

参考文献3

二级参考文献16

  • 1Parlett B N,Taylor D R,Liu Z A. A look-ahead Lanczos algorithm for unsymmetriees[J].Mathematics of Computation,1985.105-124.
  • 2Freund R,Nachtigal N. QMR:a quasi-minimal residual methods for non-Hermitian linear systems[J].Nurner Math,1991.315-339.
  • 3Freund R. A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems[J].SIAM Journal on Scientific Computing,1993.470-482.
  • 4Freund R,Hochbruck M. On the use of two OMR algorithms for solving singular systems and applications in markovchain modeling[J].Numerical Linear Algebra With Applications,1994.403-420.
  • 5Zhang N. A note on preconditioned GMRES for solving singular linear systems[J].BIT Numerical Mathematics,2010.207-220.
  • 6Saad Y,Schultz M H. GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems[J].SIAM Journal on Scientific and Statistical Computing,1986.858-869.
  • 7Berman A,Plemmons R. Cones and iterative methods for best least squares solutions of linear systems[J].SIAM Journal on Numerical Analysis,1974.145-154.
  • 8Zhang N,Wei Y. On the convergence of general stationary iterative methods for Range-Hermitian singular linear systems[J].Numerical Linear Algebra With Applications,2010,(1):139-154.doi:10.1002/nla.663.
  • 9Kelley C T. Iterative methods for linear and nonlinear equations[M].Philadelphia:SIAM,1995.60-66.
  • 10Zhang S L,Oyanagi Y,Sugihara M. Necessary and sufficient conditions for the convergence of Orthomin(k) on singular and inconsistent linear systems[J].Nurner Math,2000.391-405.

共引文献11

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部