期刊文献+

改进的残差网络对红外图像热斑状态分类研究 被引量:4

Hot Spot State Classification of Infrared Image Based on Improved Residual
下载PDF
导出
摘要 为提高光伏组件红外热斑图像识别准确率,提出一种基于多尺度残差和注意力机制相结合的新型卷积神经网络AMSRnet。在残差模块引入多卷积核,充分提取图像的深层特征信息,采用多层注意力模块,减少不必要的特征学习,增强特征的判别性,同时采用数据扩充方法防止模型过拟合。实验结果表明,AMSRnet模型训练识别自制的光伏组件红外图像热斑状态数据集,准确率高达95%,与VGG16等现有模型进行对比,AMSRnet模型的识别准确率比其他模型提高了4.41%~13.82%,且训练过程中准确率未出现明显的抖动现象,具有较高稳定性。 In order to improve the accuracy of infrared hot spot image recognition of photovoltaic modules,a new convolution neural network AMSRnet based on multi-scale residual and attention mechanism is proposed in this paper.The multiconvolution kernel is introduced into the residual module to fully extract the deep feature information of the image,and the multi-layer attention module is used to reduce unnecessary feature learning and enhance the discrimination of features.At the same time,the data expansion method is used to prevent the model from over-fitting.The experimental results show that the AMSRnet model trains to recognize the self-made infrared image hot spot state data set of photovoltaic modules,and the accuracy is as high as 95%.Compared with the existing models such as VGG16,the recognition accuracy of the AMSRnet model is 4.41% higher than that of other models,and there is no obvious jitter in the training process.
作者 贾帅康 孙海蓉 苏子凡 Jia Shuaikang
出处 《工业控制计算机》 2021年第2期79-82,共4页 Industrial Control Computer
基金 河北省自然基金(E2018502111)。
关键词 光伏热斑 红外图像 残差网路 注意力机制 图像分类 photovoltaic hot spot infrared image residual network attention mechanism image classification
  • 相关文献

参考文献4

二级参考文献17

共引文献266

同被引文献29

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部