期刊文献+

藻类捕光天线系统:结构与功能的统一

Algal light-harvesting system:Linkage of structures and functions by using structural biology
下载PDF
导出
摘要 藻类是光合自养的水生孢子植物,为了适应水下弱光的特殊生境,藻类捕光天线历经亿万年的进化,形成了特殊的结构与功能。从发现藻类捕光天线的存在到至今的70多年间,其结构解析技术的发展共经历了4个阶段:首先是利用生化及普通光谱技术研究结构组成(1950−1980年);其次是利用X-ray晶体学技术研究局部精细结构(1980年至今);再次是利用电镜技术研究完整的粗略结构(1980−2010年);最后是近10年来利用冷冻电镜技术研究完整的精细结构(2010年至今)。目前以蓝藻、红藻、绿藻和硅藻为主的藻类捕光天线复合体完整的精细结构均已被解析,仅2019年就有10余种精细结构被发现。藻类捕光天线系统结构生物学的研究,不仅搭建了对结构与功能统一认识的桥梁,而且为深入揭示藻类光合作用高效能量传递机制奠定了坚实的结构基础。将藻类捕光天线系统结构和功能统一起来,进一步研究对光环境的适应性成为未来的重点,并将为藻类捕光天线蛋白在光电器件领域的应用提供充分的科学依据。 Algae are general term of a large group of photoautotrophic aquatic sporophytes.Along with the long earth history,the algal light-harvesting antenna has evolved special structure and function,to adapt to low-light underwater environment.Since the algal light-harvesting antennas were first discovered 70 years ago,the progress of structural analysis can be divided into four stages.The first stage was from 1950 to 1980,and effects were focused on studying the structural composition of light-harvesting antenna through biochemical and spectral techniques.The second stage was from 1980 to the present,and X-ray crystallization becomes a primary tool to study the partial fine-structure of the complete complex.The third stage was from 1980 to 2010.In this stage,complete contour structure can be studied by using electron microscope(EM).The fourth stage is from 2010 to the present,and the use of cryo-EM technology to studied intact fine-structure has brought the blowout period of structural analysis in recent year.With the rapid development of cryo-EM technology,a variety of complete fine-structures of algal lightharvesting antenna complexes have been analyzed,including cyanobacteria,red algae,green algae,and diatoms.Specifically,in 2019,multiple super-molecular complex structures of algal light-harvesting antenna were resolved.This breakthrough provides us valuable structure information for the study of energy transfer and the unified relationship between structure and function.However,the synthetic understanding of the relationship between the structure,function,environment,and applications of algal light-harvesting antennas is still preliminary,compared to the huge demand of solar energy utilization from bio-materials.Therefore,further research on the light adaptability of light-harvesting proteins has become the focus of the future,and will provide a sufficient scientific basis for the application of algal light-harvesting antenna proteins in the field of photoelectric devices.
作者 甄张赫 李文军 林瀚智 秦松 Zhen Zhanghe;Li Wenjun;Lin Hanzhi;Qin Song(Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences,Yantai 264003,China;College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 100049,China;Center for Ocean Mega-Science,Chinese Academy of Sciences,Qingdao 266071,China;National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China/Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management,Guangdong Institute of Eco-environmental Science&Technology,Guangdong Academy of Sciences,Guangzhou 510650,China)
出处 《海洋学报》 CAS CSCD 北大核心 2021年第2期126-138,共13页
基金 国家自然科学基金(419061094,2061134020) 广东省科学院实施创新驱动发展能力建设专项(2020GDASYL-20200102015)。
关键词 藻类 捕光天线系统 结构生物学 结构解析技术 高效能量传递 光适应 algae light-harvesting system structural biology structural analysis technology efficient energy transfer light adaption
  • 相关文献

参考文献5

二级参考文献90

  • 1陈芳,周明,赵岩,滕吟,朱菁萍,赵开弘.鱼腥藻PCC7120藻蓝蛋白α亚基体内重组研究[J].武汉植物学研究,2006,24(5):387-391. 被引量:6
  • 2B. O'regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal Ti02 films, Nature 353 (1991) 737-740.
  • 3A. Mershin, K. Matsumoto, L. Kaiser, et al., Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO, Sci. Rep. 2 (2012).
  • 4V. Thavasi, T. Lazarova, S. Filipek, et al., Study on the feasibility of bacteriorhodopsin as bio-photosensitizer in excitonic solar cell: a first report, J. Nanosci. Nanotechnol. 9 (2009) 1679-1687.
  • 5N. Terasaki. M. Iwai, N. Yamamoto, et al., Photocurrent generation properties of histag-photosystem II immobilized on nanostructured gold electrode, Thin Solid Films 516 (2008) 2553-2557.
  • 6M. Nagata, M. Amano, T. Joke, et al., Immobilization and photocurrent activity of a light-harvesting antenna complex II, LHCII, isolated from a plant on electrodes, ACS Macro Lett. 1 (2012) 296-299.
  • 7A. McGregor, M. Klartag, L. David, et al., Allophycocyanin trimer stability and functionality are primarily due to polar enhanced hydrophobicity of the phycocyanobilin binding pocket, J. Mol. Biol. 384 (2008) 406-421.
  • 8A.A. Arteni, G. Ajlani, E.J. Boekema, Structural organisation ofphycobilisomes from Synechocystis sp strain PCC6803 and their interaction with the membrane, Biochim. Biophys. Acta-Bioenerg. 1787 (2009) 272-279.
  • 9R. MacColl, Allophycocyanin and energy transfer, Biochim. Biophys. Acta (BBA)Bioenerg. 1657 (2004) 73-81.
  • 10S.F. Liu, Y.J. Chen, Y.D. Lu, et al., Biosynthesis of fluorescent cyanobacterial allophycocyanin trimer in Escherichia coli, Photosynth. Res. 105 (2010) 135-142.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部