期刊文献+

基于SURF特征的侧扫声呐图像精确镶嵌 被引量:1

Accurate Mosaic of Side Scan Sonar Images Based on SURF Features
下载PDF
导出
摘要 针对侧扫声呐条带拼接过程中容易出现错位、灰度不均衡等问题,本文研究了一种基于SURF算法的侧扫声呐图像精确镶嵌方法。该方法通过USM滤波对单幅条带图像进行特征增强,然后利用SURF算法对相邻条带图像进行镶嵌处理,SURF算法具有执行速度快、信息量小、匹配精度高、提取的特征不受光照变化、透视、仿射、旋转等影响等优点。针对条带之前存在的误匹配点,采用RANSAC算法进行自动剔除,最后采用小波融合法对图像进行精确镶嵌。实验研究证明,采用本方法能够有效解决匹配过程中目标错位等问题,实现了侧扫声呐图像的精确镶嵌。 In view of the problems such as dislocation and uneven gray scale in the splicing process of side-scan sonar strip,this paper studies an accurate mosaic method of side-scan sonar image based on the SURF algorithm.In this method,USM filter is used to highlight the features of a single strip image,and the SURF algorithm is applied to mosaic adjacent strip images.The SURF algorithm has the advantages of fast execution,small amount of information,high matching accuracy,and the extracted features are not affected by illumination changes,perspective,affine,rotation and many other factors.The RANSAC algorithm is adopted to eliminate the false matching points before the strip,and finally wavelet fusion is used to mosaic the image accurately.The experiment shows that the method proposed in this paper can effectively solve the problem of target misalignment in the matching process and achieve precise mosaic of side-scan sonar image.
作者 何复亮 伍梦 龙睿捷 陈志高 HE Fu-liang;WU Meng;LONG Rui-jie;CHEN Zhi-gao(Nuclear Surveying and Mapping Institute of Jiangxi Province,Nanchang 330096,China;College of Surveying and Mapping Engineering,East China University of Technology,Nanchang 330006,China)
出处 《海洋技术学报》 2020年第6期35-41,共7页 Journal of Ocean Technology
基金 江苏省测绘地理信息科研资助项目(JSCHKY201915) 江西省数字国土重点实验室开放基金资助项目(DLLJ201813) 国家自然科学基金资助项目(41806114) 江西省自然科学基金资助项目(20202ACBL214019)。
关键词 侧扫声呐 图像镶嵌 SURF算法 RANSAC算法 side scan sonar image mosaic SURF algorithm RANSAC algorithm
  • 相关文献

参考文献3

二级参考文献26

  • 1ZITOVA B,FLUSSER J. Image registration methods: a survey[J]. Image and Vision Computing, 2003,21 (11) ;977-1000.
  • 2LOWE D G. Object recognition from local scale-invar- iant features[C]. Los AlaIIlitos, The 7th IEEE Interna- tional Conference on Computer Vision, 1999.
  • 3LOWED G. Distinctive image features from scale-in- variant keypoints[J]. International Journal of Comput- er Vision, 2004,60(2) :91-110.
  • 4MIKOLAJCZYK K,SCHMID C. Indexing based on scale invariant interest points[C]. Vancouver: The 8th IEEE International Conference on Computer Vision, 2001.
  • 5BAY H,ESS A, TUYTELAARS T. SURF, speeded Up robust features[C]. GRAZ: The 9th European Conference on Computer Vision, 2006.
  • 6FAUGERAS O. Thr~-dimensionnal computer vision.- a geometric viewpoint[M]. Cambridge: MIT Press, 1993.
  • 7FISCHLER M,BOLLES R C. Random sample con- sensus:a paradigm for model fitting and automatic car- tography [J]. Comm ACM, 1981,6(24) ,381-395.
  • 8韦虎,张丽艳,刘胜兰,石春琴.基于SIFT图像特征匹配的多视角深度图配准算法[J].计算机辅助设计与图形学学报,2010,22(4):654-661. 被引量:17
  • 9尧思远,王晓明,左帅.基于SURF的特征点快速匹配算法[J].激光与红外,2014,44(3):347-350. 被引量:30
  • 10孙宝华,韩跃平,徐青,赵静.基于SURF算法的产品表面缺陷检测研究[J].红外技术,2014,36(6):503-507. 被引量:4

共引文献33

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部