期刊文献+

地域性室内设计中装饰图案元素审美特征仿真

Simulation of Aesthetic Features of Decorative Pattern Elements in Regional Interior Design
下载PDF
导出
摘要 用传统方法对地域性室内设计中的装饰图案元素审美特征进行提取时,存在提取效率低和提取准确率低的问题。研究采用独立分量分析方法对装饰图案进行预处理,去除装饰图案中存在的冗余数据和噪声,对处理后的装饰图案进行Haar小波变换,得到装饰图案的细节信号和近似信号。通过模糊系统得到装饰图案的模糊强度向量,对模糊强度向量进行归一化处理,得到装饰图案元素的审美特征向量,完成地域性室内设计中装饰图案元素审美特征的提取。仿真实验结果表明,所提方法的装饰图案元素审美特征提取效率和提取准确率均较高。 A method to improve the extraction efficiency and accuracy of the aesthetic features of decorative pattern elements in regional interior design was proposed.The decorative patterns were pretreated with independent component analysis so as to remove the redundant data and noise.Furthermore,the treated patterns were processed with Haar wavelet transform and the detail and approximate signals of the patterns were obtained.Then,the fuzzy intensity vector of the patterns was gotten with the fuzzy system.The aesthetic feature vector of the decorative pattern elements was produced by normalizing the fuzzy intensity vector so that the aesthetic features of the decorative pattern elements in regional interior design were extracted.The simulation results show that the proposed method has high efficiency and accuracy.
作者 王泉 王梦苒 WANG Quan;WANG Meng-ran(School of Arts,West Anhui University,Lu’an 237012,China;Department of Sculpture,Nanjing University of Arts,Nanjing 210013,China)
出处 《辽东学院学报(自然科学版)》 CAS 2021年第1期22-26,共5页 Journal of Eastern Liaoning University:Natural Science Edition
关键词 地域性 装饰图案 特征提取 regionalism decorative pattern feature extraction
  • 相关文献

参考文献9

二级参考文献53

  • 1薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 2Dash J K, Mukhopadhyay S, Das G R. Content-based im- age retrieval using fuzzy class membership and rules based on classifier confidence [ J]. lET Image Processing, 2015, 9(9) : 836-848.
  • 3Kherifi, M. L. , Ziou, D. , And Bernardi, A. Combining positive and negative examples in relevance feedback for content- based image retrieval [ J ]. Vis. Comm. Image Rep. ,2003, 14(3) : 428-457.
  • 4Takahashi T, Kurita T. Mixture of subspaces image repre- sentation and compact coding for large-scale image retrieval [ J ]. IEEE Trans. on Pattern Analysis and Machine Intelli- gence, 2015, 37(7): 1469-1479.
  • 5Chen H, Ding J, Sheu H T. Image retrieval based on quadtree classified vector quantization [ J ]. Multimedia Tools and Applications, 2014, 72 (2) : 1961-1984.
  • 6LOWE D G. Distinctive image features from scale-invariant key-points [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 7LI J K, WANG G. An improved SIFT matching algorithm based on geometric similarity [ C]//Proceeding of the 2015 5th International Conference on Electronics Information and Emergency Communica- tion. Piscataway, NJ: IEEE, 2015: 16- 19.
  • 8纪华,吴元昊,孙宏海,王延杰.结合全局信息的SIFT特征匹配算法[J].光学精密工程,2009,17(2):439-444. 被引量:70
  • 9杨飞,苏剑波.人脸显性特征的融合构造方法及识别[J].电子学报,2012,40(3):466-471. 被引量:5
  • 10甘甜,冯少彤,聂守平,朱竹青.基于分块离散小波变换的图像信息隐藏与盲提取算法[J].物理学报,2012,61(8):183-190. 被引量:12

共引文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部