期刊文献+

新型装配式钢-UHPC防船撞装置关键参数及其性能研究 被引量:3

Research on key parameters and performance of new fabricated steel-UHPC anti-ship collision device
下载PDF
导出
摘要 将18个内衬框架式耗能元件的独立浮箱整体装配式连接作为防船撞耗能装置,利用LS-DYNA对船桥碰撞系统进行精细化建模,通过对防船撞装置内部耗能元件材料种类、浮箱壁厚、浮箱配筋率等关键参数进行优化分析,得到不同参数下桥墩撞击力、船舶变形能和桥墩能量等变化规律。研究结果表明:搭配低碳钢耗能元件时装置的防撞性能比高强铝合金和UHPC复合材料的防撞性能优;浮箱壁厚为120 mm时装置的防撞性能比壁厚为90 mm和150 mm时防撞性能优;当浮箱配筋率ρ为5%时装置的防撞性能优于ρ为4%,6%和7%时的防撞性能;基于计算结果,综合得到最优参数的钢-UHPC防船撞装置,在此最优参数及速度分别为1,3和5 m/s时,与无保护工况相比,船舶变形能分别减少89.6%,64.0%和51.3%,最大船桥碰撞力分别降低15.2%,36.4%和41.8%,能够有效保护船舶和桥墩。 The integral assembly connection of the independent floating tank with 18 inner lining frame type energy dissipating elements was taken as the energy dissipating device against ship collision.LS-DYNA was used to establish the refined finite element model of ship bridge collision system.Through the performance optimization analysis of the key parameters such as the material type of energy dissipation elements,the wall thickness of the pontoon,the reinforcement ratio of the pontoon and so on,the change rules of the impact force of the pier,the deformation energy of the ship and the energy of the pier with different parameters were obtained.The results show that the anti-collision performance is better than that of high-strength aluminum alloy and UHPC composite when using low-carbon steel energy dissipation components.The anti-collision performanceof the device with 120 mm wall thickness is better than that of the device with 150 mm and 90 mm wall thickness,and the anti-collision performance of the device with 5%reinforcement ratio is better than that of the device with 4%,6%and 7%reinforcement ratio.Based on the calculation results,the optimal parameters of steel UHPC ship collision prevention device are obtained.When the speed is 1,3 and 5 m/s,the ship deformation energy is reduced by 89.6%,64.0%and 51.3%respectively,and the maximum collision force of ship bridge is reduced by 15.2%,36.4%and 41.8%respectively,which can effectively protect the ship and pier.
作者 李华永 周凌宇 王强 林全富 杨斌财 张强 何铁名 LI Huayong;ZHOU Lingyu;WANG Qiang;LIN Quanfu;YANG Bincai;ZHANG Qiang;HE Tieming(School of Civil Engineering,Central South University,Changsha 410076,China;Zhuhai Communication Group Co.Ltd.,Zhuhai 519060,China;China Railway Major Bridge Reconnaissance&Design Institute Co.Ltd.,Wuhan 430000,China)
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第2期519-528,共10页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(51578546)。
关键词 船桥碰撞 装配式 钢-混凝土 撞击力 缓冲吸能 bridge collision fabricated steel concrete impact force buffering energy absorption
  • 相关文献

参考文献7

二级参考文献52

  • 1王远功.冲击问题的动态分析方法[J].振动与冲击,1994,13(1):41-45. 被引量:20
  • 2张海明,曹映泓,段乃民,陈国虞.湛江海湾大桥主墩防撞设施结构设计[J].中外公路,2006,26(5):82-84. 被引量:20
  • 3田红旗,卢执中.列车撞击动力学建模研究[J].铁道车辆,1997,35(4):8-11. 被引量:11
  • 4梁文娟, 等. 船舶与桥墩碰撞力计算及桥墩防撞[C]. 第十四届全国桥梁学术会议论文集, 2000. 566-571.Liang Wenjuan, et. Collision force between ship and bridge and protection of bridge pill [C]. Proceedings of 14th Bridge Conference of China, 2000. 566-571.
  • 5MINORSKY V U. An analysis of ship collision to pro tection of nuclear powered plant [J]. Journal of Ship Research, 1959, 3(2): 1-4.
  • 6RECKLING K A. Mechanics of minor ship collisions [J]. International Journal of Impact Engineering, 1983, 1(3): 281-299.
  • 7PETERSEN M J. Dynamics of ship collisions [J]. Ocean Engineering, 1982, 9(4) : 295 - 329.
  • 8KNOTT M A, LARSEN P, DAMGAAD L O. Guide specification and commentary for vessel collision design of highway bridges [R]. Washington, DC: AASHTO, 1991.
  • 9中华人民共和国交通部.JTJ021-89公路桥涵设计通用规范[S].北京:人民交通出版社,1989.
  • 10Wang J, Bu L, Cao C. Code Formulas for Ship Impact Design of Bridges[J]. Journal of Bridge Engineering, 2012, 17(4):599-606.

共引文献115

同被引文献19

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部