期刊文献+

基于脑机接口的智能家居控制系统 被引量:2

Intelligent Home Control System Based on Brain-Computer Interface
下载PDF
导出
摘要 为实现家居系统的智能控制,提出一种基于脑机接口、脑电信号识别分类和增强现实(AR:Augmented Reality)的解决方案。通过佩戴设备收集提取脑电图(EEG:Electro Encephalo Gram)信号,对数据使用小波变换去噪并利用短时傅立叶变换进一步处理,利用主成分分析(PCA:Principal Component Analysis)进行降维和卷积神经网络(CNN:Convolutional Neural Network)进行分类,形成分类模型。根据分类结果得到大脑发出的指令,以此对家居进行控制,结合AR技术能使控制过程可视化且更具交互性,符合未来智能家居控制方法的发展趋势。 In order to achieve the intelligent control of home system,a solution based on brain computer interface,recognition and classification of brain electrical signals and AR(Augmented Reality)is proposed.EEG(Electro Encephalo Gram)signals are collected and extracted from the brain by wearing a device,and the data is de-noised by wavelet transform and further processed by STFT(Short Time Fourier Transform).Then,PCA(Principal Component Analysis)and CNN(Convolutional Neural Network)are used for classification to form a classification model.According to the classification results,the instructions is obtained from the brain to control the home.Combined with AR technology,the control process can be visualized and is more interactive,which is in line with the development trend of the control method of the future smart home.
作者 王增尉 刘佳奇 戴露 李芷萱 王启月 李蛟 赵宏伟 WANG Zengwei;LIU Jiaqi;DAI Lu;LI Zhixuan;WANG Qiyue;LI Jiao;ZHAO Hongwei(College of Electronic Science and Technology,Jilin University,Changchun 130012,China;College of Computer Science and Technology,Jilin University,Changchun 130012,China;Library,Jilin University,Changchun 130012,China)
出处 《吉林大学学报(信息科学版)》 CAS 2021年第1期121-126,共6页 Journal of Jilin University(Information Science Edition)
基金 吉林省科技发展计划技术攻关基金资助项目(20190302026GX) 吉林省自然科学基金资助项目(20200201037JC) 吉林省高等教育学会高教科研基金资助项目(JGJX2018D10)。
关键词 脑机接口 智能家居 EEG信号 卷积神经网络 AR技术 brain computer interface smart home the electro encephalo gram(EEG)signal convolutional neural network(CNN) augmented reality(AR)technology
  • 相关文献

参考文献5

二级参考文献41

  • 1沈民奋,黎展程,孙丽莎.小波包熵在脑电信号分析中的应用[J].数据采集与处理,2005,20(1):48-53. 被引量:11
  • 2张严,王树勋,李生红.二次相位耦合的1维谱分析[J].电子学报,1996,24(4):109-112. 被引量:44
  • 3谢松云,张振中,杨金孝,张坤.脑电信号的若干处理方法研究与评价[J].计算机仿真,2007,24(2):326-330. 被引量:26
  • 4Blankertz B,et al. Classifying single trial EEG: towards brain computer interfacing[J]. Advances in Neural Information Process Systems, 2002,14 : 157- 164.
  • 5Barreto G A, et al. On the classification of mental tasks:a performance comparison of neural and statistical approaches[A]. Proceeding IEEE Workshop on Machine Learning for Signal Processing[C]. 2004. 529 -538.
  • 6Palaniappan R. Brain computer interface design using band powers extracted during mental tasks[A]. Proceeding 2nd International IEEE EMBS Conference on Neural Engineering[C]. 2005. 321-324.
  • 7Craig D A,Nguyen H T,Burchey H A. Two channel EEG thought pattern classifier[A]. 28th Annual International Conference of the IEEE - Engineering - in - Medicine- and - Biology - Society[C]. 2006, 1 - 15: 3342-3345.
  • 8Obermaier B, Neuper C. Information transfer rate in a five- classes brain- computer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2001,9 (3) : 283 - 288.
  • 9Schlogl A,Lee F,Bischof H L. Characterization of four - class motor imagery EEG data for the BCI - competition 2005[J]. Journal of Neural Engineering, 2005, (4) : 14- 22.
  • 10刁卫锋 等.用一种小波特征的复杂手操作脑电信号模式识别.振动.测试与诊断,2006,26:123-127.

共引文献32

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部