期刊文献+

融合信任关系与评论文本的矩阵分解推荐算法 被引量:4

Matrix Factorization Recommendation Algorithms by Exploiting Trust Relationship and Review Text
下载PDF
导出
摘要 针对推荐系统中用户评分数据稀疏所导致推荐结果不精确的问题,本文尝试将用户评分、信任关系和项目评论文本信息融合在概率矩阵分解方法中以缓解评分数据稀疏性问题.首先以共同好友数目及项目流行度改进皮尔逊用户偏好相似程度并将其作为用户间的直接信任值,然后考虑用户间信任传播过程中所有路径的影响构建新的信任网络;其次通过BERT预训练(Pre-training of Deep Bidirectional Transformers for Language Understanding)模型提取项目的评论文本向量,构造项目的评论文本特征矩阵;最后基于概率矩阵分解(Probabilistic Matrix Factorization,PMF)模型融合用户的评分数据、用户的信任关系以及项目的评论文本信息进行推荐.通过不断的理论分析并在真实的Yelp数据集上进行实验验证,均表明本文算法的有效性. Aiming at the problem of inaccurate recommendation results caused by sparse user rating data in the recommendation system,this article attempts to fuse user rating,trust relationships,and item review text information into a probability matrix decomposition algorithm to alleviate the problem of sparse rating data.First,improve the similarity degree of Pearson user preferences with the number of common friends and project popularity as the direct trust value between users,and then consider the impact of all paths in the process of trust propagation between users to build a new trust network;secondly,through BERT pre-trained(Pre-training of Deep Bidirectional Transformers for Language Understanding)model extracts the content of the review text of the project and constructs the potential features of the review text of the project;finally,the user's rating data is integrated based on the Probabilistic Matrix Factorization(PMF)model,The user's trust relationship,and the item's comment text information.Through continuous theoretical analysis and experimental verification,the effectiveness of the algorithm in this paper is demonstrated.
作者 李昆仑 翟利娜 赵佳耀 王萌萌 LI Kun-lun;ZHAI Li-na;ZHAO Jia-yao;WANG Meng-meng(College of Electronic and Information Engineering,Hebei University,Baoding 071000,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2021年第2期285-290,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61672205)资助.
关键词 推荐算法 概率矩阵分解 BERT 直接信任 信任传播 评论文本 recommendation algorithm probability matrix factorization BERT direct trust trust dissemination review text
  • 相关文献

参考文献5

二级参考文献22

  • 1宋枫溪,程科,杨静宇,刘树海.最大散度差和大间距线性投影与支持向量机[J].自动化学报,2004,30(6):890-896. 被引量:58
  • 2张志政,邢汉承.一种基于实例推理的概念学习方法[J].计算机工程与应用,2006,42(10):87-90. 被引量:2
  • 3张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:195
  • 4Dietterich T G, l.athrop R H, Lozano-Perez T. Solving the Multiple Instance Problem with Axis- parallel Rectangles [J]. Artificial Intelligence, 1997, 89(1)= 31 -71.
  • 5Zhang M L, Zhou Z H. Multi instance Clustering with Applications to Multi instance Prediction[J]. Applied Intelligence, 2009, 31(1): 47-68.
  • 6Wang J, Zucker J D. Solving the Multiple-instance Problem: A Lazy Learning Approach[C]//Proceed ings of the 17th ICMI: San Francisco= Morgan Kaufmann Publishers, 2000.
  • 7Zhou Z H, Yu Y. Ensembling Local Learners Through Multlmodal Perturbation[J]. IEIdE Trans SMC--Part B : Cybernetics,2005, 35(4) : 725 -735.
  • 8Zafra A, Romero C, Ventura S. Multiple Instance Learning for Classifying Students in Learning Man- agement Systems[J]. Expert Systems zc, ith Appli cations, 2011, 38(12): 15 020 -15 031.
  • 9Tsai C F, Hung C. Cluster Ensembles in Collabora- tive Filtering Recommendation[J]. Applied Soft Computing, 2012, 12(4): 1 417-1 425.
  • 10李聪,梁昌勇.基于属性值偏好矩阵的协同过滤推荐算法[J].情报学报,2008,27(6):884-890. 被引量:19

共引文献141

同被引文献16

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部