期刊文献+

利用深度学习的HEVC帧内编码单元快速划分算法 被引量:4

Fast HEVC Coding Units Partitioning Algorithm Based on Deep Learning
下载PDF
导出
摘要 新一代视频编码标准高效视频编码(High Efficiency Video Coding,HEVC)中编码单元(Coding Unit,CU)大小不同的特性使得编码效率得到显著提升,但同时带来了极高的计算复杂度.为了去除CU划分中多余的计算从而降低编码复杂度,本文提出了一种利用深度学习的编码单元快速划分算法.首先使用原始视频亮度块及编码信息建立了一个HEVC中CU划分的数据库,用于接下来本文深度学习神经网络的训练.然后,为了更好地贴合编码单元划分的层级结构,本文提出了一种基于Inception模块的神经网络结构,使之内嵌于HEVC编码框架中对编码单元的划分进行提前预测,有效地去除了All Intra配置下中冗余的CU划分计算.实验结果表明,本文提出的算法与HEVC官方测试模型(HM16.12)相比,编码时间平均降低了61.31%,而BD-BR与BD-PSNR仅为1.86%和-0.13dB. The different size of the coding unit(CU)in the new generation of videocoding standard,highefficiency video coding(HEVC)makes the coding efficiency significantly improved,but at the same time brings high computational complexity.In order to remove the redundant calculation in CU partition and reduce the coding complexity,this paper proposes a fast partitioning algorithm based on deep learning.Firstly,a database of CU partition in HEVC is established by the original video luminance block and coding information,which provides data guarantee for trainingthedeep learning model.Then,in order to better fit the hierarchical structure of coding unit partition,this paper uses a neural network structure based on Inception Module,which isembeddedin the HEVC coding framework to predict the partition of coding units in advance,effectively eliminating the redundant CU partition calculation in All Intra configuration.The experimental results show that compared with the HEVC official test model(HM16.12),the proposed algorithm reduces the coding time by an average of 61.31%,while the BD-BR and BD-PSNR are only 1.86%and-0.13dB.
作者 易清明 林成思 石敏 YI Qing-ming;LIN Cheng-si;SHI Min(College of Information Science and Technology,Jinan University,Guangzhou 510632,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2021年第2期368-373,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61603153)资助 广州市“羊城创新创业领军人才支持计划”之创新领军人才项目(领军人才2019019)资助 广州市产业技术重大攻关计划项目(201802010028)资助.
关键词 HEVC 编码单元划分 深度学习 Inception模块 HEVC coding unit partition deep learning Inception module
  • 相关文献

参考文献3

二级参考文献6

共引文献11

同被引文献32

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部