摘要
研究了激光熔化沉积硼变质TC4钛合金材料在不同应变幅值下的低周疲劳性能。结果表明,激光熔化沉积硼变质TC4样件在0.8%~1.0%应变幅值下的低周疲劳性能与退火态锻件相当。通过对比分析固溶时效态激光熔化沉积硼变质TC4与退火态TC4锻件的微观组织、低周疲劳性能可以发现,当经受高于1.0%的应变幅值时,固溶时效态激光熔化沉积硼变质TC4的网篮组织比TC4退火态锻件的双态组织具有更好的抵抗裂纹扩展的能力。此外,固溶时效态激光熔化沉积硼变质TC4钛合金在各种应变幅值下均发生了不同程度的循环软化行为。最后采用扫描电镜对固溶时效态激光熔化沉积硼变质TC4钛合金的低周疲劳断口形貌进行了观察,并研究了低周疲劳失效过程中裂纹的扩展过程。
This paper investigates the low-cycle fatigue performance of boron-modified TC4 titanium alloy deposited via laser melting at different strain amplitudes. The results reveal that the low-cycle fatigue performance of boron-modified TC4 titanium alloy deposited via laser melting is comparable to that of annealed forging when subjected to a strain amplitude of 0.8%--1.0%. A comparison of the microstructure and low-cycle fatigue performance of the boron-modified laser melting deposited TC4 in solid solution-aging state with the annealed TC4 forging is performed. It is found that as the strain amplitude is above 1.0%, the basket-shaped microstructure of the solid solution-aged boron-modified TC4 titanium alloy deposited via laser melting exhibits better resistance to crack propagation compared with the double phase microstructure of TC4 annealed forgings. Moreover, the solid solution-aged boron-modified TC4 titanium alloy obtained via laser melting deposition exhibits different degrees of cyclic softening behavior at different strain amplitudes. Finally, the morphologies of the low-cycle fatigue fractures of solid solution-aged boron-modified TC4 titanium alloy obtained via laser melting deposition are observed under a scanning electron microscope, and crack propagation during low-cycle fatigue failure is studied here.
作者
霍浩
张安峰
齐振佳
吴梦杰
王豫跃
王普强
Huo Hao;Zhang Anfeng;Qi Zhenjia;Wu Mengjie;Wang Yuyue;Wang Puqiang(State Key Laboratory for Manufacturing Systems Engineering Xi'an Jiaotong University Xi'an,Shaanxi 710049,China;State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University Xi'an,Shaanxi 710049,China)
出处
《中国激光》
EI
CAS
CSCD
北大核心
2020年第12期77-85,共9页
Chinese Journal of Lasers
基金
国家重点研发计划(2016YFB1100102)
国家自然科学基金(51775417)。
关键词
激光技术
TC4钛合金
低周疲劳性能
激光熔化沉积
硼
微观组织
laser technology
TC4titanium alloy
low-cycle fatigue performance
laser melting deposition
boron
microstructure