摘要
动态链接预测的关键是建模网络动态性和抽取局部结构特征.为此,文中提出基于节点表示和子图结构的动态链接预测方法.为了建模节点的动态演化特性,引入节点向量模型,按序拼接各个历史快照的节点表示.为了建模链接的局部子图结构信息,引入图同构算法,编码局部子图的拓扑结构.最终目标链接的特征表示融合每个历史快照中目标节点对的向量表征和局部子图的拓扑结构.实验表明文中方法性能较优.
The key to dynamic link prediction is modeling network dynamics and extracting local structural features.Therefore,a method for dynamic network link prediction based on node representation and subgraph structure is proposed.To model node evolution dynamics,the node2vec model is introduced,and the node representations in historical snapshots are concatenated in temporal order.To model the local subgraph structure information,a graph isomorphism algorithm is employed to encode the topology structure of the local subgraph.In each historical snapshot,the node vectors of the target node pair and the topology structure of the local subgraph are fused by the ultimate feature representation of the target link.Extensive experiments demonstrate that the proposed method achieves better performance.
作者
郝宵荣
王莉
廉涛
HAO Xiaorong;WANG Li;LIAN Tao(College of Data Science,Taiyuan University of Technology,Jinzhong 030600)
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2021年第2期117-126,共10页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金项目(No.61872260)资助。
关键词
动态网络
链接预测
节点表示
子图结构
Dynamic Network
Link Prediction
Node Representation
Subgraph Structure