期刊文献+

融合Copulas理论和关联规则挖掘的查询扩展

Query Expansion Combining Copulas Theory and Association Rules Mining
下载PDF
导出
摘要 将Copulas理论引入文本特征词关联模式挖掘,提出融合Copulas理论和关联规则挖掘的查询扩展算法.从初检文档集中提取前列n篇文档构建伪相关反馈文档集或用户相关反馈文档集,利用基于Copulas理论的支持度和置信度对相关反馈文档集挖掘含有原查询词项的特征词频繁项集和关联规则模式,从这些规则模式中提取扩展词,实现查询扩展.在NTCIR-5 CLIR中英文本语料上的实验表明,文中算法可有效遏制查询主题漂移和词不匹配问题,改善信息检索性能,提升扩展词质量,减少无效扩展词. The Copulas theory is introduced into the association pattern mining of text feature terms,and a query expansion algorithm combining Copulas theory and association rules mining is proposed.Firstly,top n documents of the document set returned by the query are extracted to construct the pseudo-relevance feedback document set(PRFDS)or user relevance feedback document set(URFDS).Then,the support and the confidence based on Copulas theory are applied to mine the feature term frequent itemsets and association rule patterns with the original query terms in PRFDS or URFDS,and the expansion terms are obtained from the patterns to realize query expansion.The experimental results on NTCIR-5 CLIR Chinese and English corpus show that the proposed expansion algorithm effectively restrains the problems of query topic drift and word mismatch,and enhances the performance of information retrieval with the quality of expansion terms improved and the invalid expansion terms reduced.
作者 黄名选 胡小春 HUANG Mingxuan;Hu Xiaochun(Guangxi Key Laboratory of Cross-Border E-commerce Intelligent Information Processing,Guangxi University of Finance and Economics,Nanning 530003;School of Information and Statistics,Guangxi University of Finance and Economics,Nanning 530003)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2021年第2期176-187,共12页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61762006)资助。
关键词 自然语言处理 查询扩展 信息检索 关联规则 文本挖掘 Natural Language Processing Query Expansion Information Retrieval Association Rule Text Mining
  • 相关文献

参考文献8

二级参考文献40

  • 1CHANG Y C, CHEN S M, LIAU C J. A new query, expansion method based on fuzzy rules[ C]//Proceedings of the 7th Joint Conference on AI, Fuzzy system, and Grey system. Taipei, Taiwan, CN: [ s. n. ], 2003:335 - 344.
  • 2CUI HANG, WEN JI-RONG. NIE JIAN-YUN, et al. Probabilistic query expansion using query logs[ C]// Proceedings of the 11 th International Conference on World Wide Web. New York, NY: ACM Press, 2002:325 - 332.
  • 3JIN QIAN-LI, ZHAO JUN, XU BO. Query expansion based on term similarity tree model[ C]// Proceedings of the 2003 International Conference on Natural Language Processing and Knowledge Engineering. Washington, DC: IEEE Computer Society, 2003:400 - 406.
  • 4LIN H C, WANG L H, CHEN S M. A new query expansion method for document retrieval by mining additional query, terms[ C]// Proceedings of the 2005 International Conference on Business and Information. Hong Kong, China: [ s. n. ], 2005:487 -496.
  • 5MARTIN-BAUTISTA M J, SANCHES D, CHAMORRO-MARTINEZ J, et al. Mining Web documents to find additional query terms using fuzzy association rules[ J]. Fuzzy Sets and Systems, 2004, 148 (1):85 -104.
  • 6LEE M C, TSAI K H, WANG T I. A practical ontology query expansion algorithm for semantic-aware learning objects retrieval[ J]. Computers and Education, 2007, 50(4) : 1240 - 1257.
  • 7中科院计算所智能软件部.Firtex全文索引和检索平台[EB/OL].[2008-03-01]http://www.frtex.org/.
  • 8SALTON G. BUCKLEY C, FOX E A. Automatic query foimulations in information retrieval[ J]. Journal of the American Society for Information Science, 1983, 34 (4) : 262 -280.
  • 9SONG M, SONG I Y, HU X H, et al. Integration of association rules and ontologies for semantic query expansion [J]. Data and Knowledge Engineering, 2007, 63(1) : 63 - 75.
  • 10SONG M, SONG I Y, HU X H. KPSpotter: A flexible Information gain-based key phrase extraction system[ C]//Proceedings of the 5th ACM International Workshop on Web Information and Data Management: WIDM'03. New York: ACM Press, 2003:50 - 53.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部