期刊文献+

基于多输出的3D卷积神经网络诊断阿尔兹海默病 被引量:7

Diagnosis of Alzheimer's Disease Based on Multi-Output Three-Dimensional Convolutional Neural Network
下载PDF
导出
摘要 随着人口老龄化的加深,阿尔兹海默疾病更加大众化地出现在我们生活中,而早期精准诊断阿尔兹海默疾病并进行正向干预可有效延缓阿尔兹海默疾病的进程.基于磁共振图像的阿尔兹海默疾病的精准诊断需要综合利用多个感兴趣区域(ROIs)的信息,而单个ROI无法体现不同ROIs之间存在的联系与影响.本文首先提出三输入3D卷积神经网络(CNN),综合利用大脑3D磁共振图像中海马体、灰质(无海马体)和白质3个ROIs的信息.此外,随着神经网络的加深,原始图像的重要特征信息会部分丢失,因此我们又提出一种多输出3D CNN,通过增加中间层的连接和输出,缩短输入和输出之间的距离,增强特征传播,减少特征信息的丢失.结果显示采用多输出3DCNN模型实现整个测试集三分类的准确率为90.5%、精确率为91.0%、灵敏度为90.4%、特异性为95.2%、F1-score为90.5%,诊断性能优于单输出3D CNN模型. Alzheimer's disease has become more prevalent in our lives as the population ages.Accurate diagnosis and positive intervention can effectively delay the progress of early-stage Alzheimer’s disease.Accurate diagnosis of Alzheimer’s disease requires the combination of information from multiple regions of interest(ROIs),because the use of one single ROI may lose the connection and impact among multiple brain regions.In this paper,we firstly proposed a three-input convolutional neural network(CNN)to comprehensively utilize the information from three ROIs,hippocampus,other gray matter(without hippocampus)and white matter.In addition,as the neural network deepens,important feature information of original image will be partially lost.Therefore,we proposed a multi-output 3D CNN,which increases the connection and output of middle layers,shortens the distance between input and output,enhances feature propagation and reduces the loss of feature information.The results showed that the accuracy rate,precision rate,sensitivity,specificity and F1-score of the test set diagnosis obtained by multi-output 3D CNN model were 90.5%,91.0%,90.4%,95.2%and 90.5%,respectively.The diagnostic performance was better than that of the single-output 3D CNN model.
作者 魏志宏 闫士举 韩宝三 宋成利 WEI Zhi-hong;YAN Shi-ju;HAN Bao-san;SONG Cheng-li(School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《波谱学杂志》 CAS 北大核心 2021年第1期92-100,共9页 Chinese Journal of Magnetic Resonance
关键词 3D卷积神经网络(3D CNN) 多个感兴趣区域 多输出 阿尔兹海默病 分类 3D CNN multiple regions of interest multi-output Alzheimer’s disease classification
  • 相关文献

参考文献4

二级参考文献17

  • 1盛树立.老年性痴呆及相关疾病[M].北京:科学技术文献出版社,2006:1-4.159-160.
  • 2López O L,Becker J T.Factors that modify the natural course of Alzheimer's disease[J].Rev Neurol,2003,37(2):149-155.
  • 3Galton C J,Hodges J R.The spectrum of dementia and its treatment[J].J R Coll Physicians Lond,1999,33(3):234-239.
  • 4Zhang Z X,Zahner G E,Rom6n G C,et al.Dementia subtypes in China:prevalence in Beijing,Xian,Shanghai and Chengdu[J].Arch Neurol,2005,62 (3):447-453.
  • 5Suh G H,Shah A.A review of the epidemiological transition in dementia-cross-national comparisons of the indices related to alzheimer's disease and vascular dementia[J].Acta Psychiatr Scand,2001,104 (1):4-11.
  • 6In Young Hyun,Jae Sung Lee,Joung Ho Rha,Il Keun Lee,Choong Kun Ha,Dong Soo Lee. Different uptake of 99mTc-ECD and 99mTc-HMPAO in the same brains: analysis by statistical parametric mapping[J] 2001,European Journal of Nuclear Medicine and Molecular Imaging(2):191~197
  • 7Kurt Audenaert,Boudewijn Brans,Koen Van Laere,Philippe Lahorte,Jan Versijpt,Kees van Heeringen,Rudi Dierckx. Verbal fluency as a prefrontal activation probe: a validation study using 99mTc-ECD brain SPET[J] 2000,European Journal of Nuclear Medicine(12):1800~1808
  • 8Jong Doo Lee,Hee-Joung Kim,Byung In Lee,Ok Joon Kim,Tae Joo Jeon,Min Jung Kim. Evaluation of ictal brain SPET using statistical parametric mapping in temporal lobe epilepsy[J] 2000,European Journal of Nuclear Medicine(11):1658~1665
  • 9张小玲.老年痴呆病人的家庭护理及预防保健[J].护士进修杂志,1998,13(5):19-19. 被引量:31
  • 10李昕,童隆正,周晓霞,王旭.基于MR图像三维纹理特征的阿尔茨海默病和轻度认知障碍的分类[J].中国医学影像技术,2011,27(5):1047-1051. 被引量:18

共引文献39

同被引文献59

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部