期刊文献+

可再生能源大数据在智慧城市规划设计中产生的影响分析 被引量:4

Impact Analysis of Renewable Energy Big Data in Smart City Planning and Design
下载PDF
导出
摘要 指出了近几年云计算等字眼开始频繁地出现在我们的视野中,大数据及其相关技术的逐渐普及开始强烈冲击各个传统行业。就规划行业而言,空前丰富的城市数据得以全面搜集,规划师们头一次获得了以个体为设计出发点的数据条件。可再生能源大数据记录着城市可再生能源的应用及其效果,对实现城市能源的可持续发展起着至关重要的作用。对可再生能源大数据会在未来的城市规划设计过程中产生何种影响进行了分析和探讨,为当前对城乡规划未来发展的探索提供参考。 In recent years,cloud computing and other words began to appear frequently in our vision,and the gradual popularization of big data and related technologies began to strongly impact various traditional industries.As far as the planning industry is concerned,the unprecedented wealth of urban data has been comprehensively collected.For the first time,planners have obtained the data conditions based on individual design.Renewable energy big data records the application and effect of urban renewable energy,which plays an important role in realizing the sustainable development of urban energy.This paper analyzes and discusses the impact of renewable energy big data in the process of urban planning and design in the future,so as to provide reference for the exploration of future development of urban and rural planning.
作者 李达耀 黄焕晟 胡荃 韦小惠 金成国 Li Dayao;Huang Huansheng;Hu Quan;Wei Xiaohui;Jin Chengguo(Beibu Gulf University,Qinzhou,Guangxi 535011,China;Qinzhou Structural Health Monitoring Research Center of Engineering Technology,Qinzhou,Guangxi 535000,China)
出处 《绿色科技》 2021年第2期194-195,共2页 Journal of Green Science and Technology
基金 广西高校中青年教师科研基础能力提升项目(编号:2020KY10026) 钦州市结构健康监测工程技术研究中心项目(编号:2017ZRKT06)。
关键词 可再生能源 大数据 智慧城市规划 转变 renewable energy big data smart city planning transformation
  • 相关文献

参考文献3

二级参考文献79

  • 1Batty M. Smart Cities, Big Data[J].Environment and Planning-Part B, 2012(2) : 191.
  • 2Douglas, Laney. 3D Data Manage- ment: Controlling Data Volume, Velocity and Variety[N]. Gartner, 2001-02-06.
  • 3Batty M, Axhausen K W, Giannotti F, et al. Smart Cities of the Future[J]. The European Physical Journal SDecial Topics, 2013(1): 481-518.
  • 4Yue Y, Lan T, Yeh A G O, et al. Zooming into Individuals to Understand the Collective: A Review of Tajectory- based Travel Behaviour Studies[J]. Travel Behaviour and Society, 2014(2): 69-78.
  • 5Kang C, Zhang Y, Ma X, et al. Inferring Properties and Revealing Geographical Impacts of Intercity Mobile Communication Network of China Using a Subnet Data Set[J]. International Journal of Geographical Information Science, 2013(3): 431-448.
  • 6Liu Y, Wang F, Xiao Y, et al. Urban Land Uses and Traffic "Source-sinK Areas": Evidence from GPS-enabled Taxi Data in Shanghai[J]. LandscaDe and Urban Planning, 2012(1): 73-87.
  • 7Sagl G, Resch B, Hawelka B, et al. From Social Sensor Data to Collective Human Behaviour Patterns: Analysing and Visualising Spatial-temporal Dynamics in UrbanEnvironments[C]//Proceedings of the GI-Forum 2012: Revisualization, Society and Learning, 2012.
  • 8Cranshaw J, Schwartz R, Hong J I, et al. The Livehoods Project- Utilizing Social Media to Understand the Dynamics of a City[C]//ICW, 2012.
  • 9Hollenstein L, Purves R. Exploring Place Through Userenerated Con - tent: Using Flickr Tags to Describe City Cores[J]. Journal of Spatial Information Science, 2014(I): 21-48.
  • 10Croitoru A, Stefanidis A, RadziK- owsKi J, et al. Towards a Colla- borative Geosocial Analysis Work - bench[C]//Proceedings of the 3rd International Conference on Co- muting for Geospatial Research and Applications. ACM, 2012.

共引文献193

同被引文献18

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部