期刊文献+

基于暗通道先验的去雾改进算法 被引量:4

An improved algorithm of fog removal based on the prior of dark channel
下载PDF
导出
摘要 针对雾霾图像中含有高亮、大面积浓雾,天空区域无法清晰识别,求取出的图像偏暗、色彩失真的问题,提出了一种基于暗通道先验的自适应阈值分割和透射率补偿的去雾改进算法,通过OSTU阈值分割将图像分为前景区域和背景区域,求取亮暗通道,并通过统计函数计算出前景区域和背景区域所占的像素比例,加权求取大气光值。通过透射率补偿参数K的引进,使得求取的透射率更接近真实值,最后通过CLEAR法进行色度调整。实验结果表明,该法去雾后的图像细节信息保留完整,失真度减小,视觉上更加真实自然,信息熵平均提高7.03%,SSIM平均提高5.56%,MSE平均减小9.19%。 In view of the problem that the haze image contains high brightness,large area thick fog,and the sky region can not be clearly identified,the resulting image is dark and the color is distorted,in this paper,an improved algorithm based on dark-channel prior adaptive threshold segmentation and transmission compensation is proposed.The image is divided into foreground region and background region by OSTU threshold segmentation,the ratio of foreground and background pixels is calculated by statistical function,and the atmospheric luminous value is calculated by weighting.By introducing the transmission compensation parameter K,the transmissivity obtained is closer to the real value.CLEAR method is used to adjust the chromaticity.The experimental results show that the detail information of the defogged image is retained intact,the distortion is reduced,and the vision is more real and natural.The information entropy,SSIM and MSE are increased by 7.03%,5.56%and 9.19%respectively.
作者 孙乐乐 席一帆 吕悦 SUN Lele;XI Yifan;LV Yue(School of Information Engineering,Chang’an University,Xi’an 710064,China)
出处 《电子设计工程》 2021年第4期48-52,共5页 Electronic Design Engineering
基金 国家自然科学基金面上项目(51878066)。
关键词 去雾 大气散射模型 透射率补偿 阈值分割 CLEAR法 defogging atmospheric scattering model transmittance compensation threshold segmentation CLEAR method
  • 相关文献

参考文献8

二级参考文献55

  • 1Nayar S K, Narasimhan S G. Vision in bad weather. In:Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece:IEEE, 1999. 820-827.
  • 2Narasimhan S G, Nayar S K. Chromatic framework for vision in bad weather. In:Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, SC, USA:IEEE, 2000. 598-605.
  • 3Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6):713-724.
  • 4Schechner Y Y, Narasimhan S G, Nayar S K. Polarization-based vision through haze. Applied Optics, 2003, 42(3):511-525.
  • 5Namer E, Schechner Y Y. Advanced visibility improvement based on polarization filtered images. In:Proceedings of the 2005 SPIE 5888, Polarization Science and Remote Sensing II. San Diego, USA:SPIE, 2005. 36-45.
  • 6Tan R T. Visibility in bad weather from a single image. In:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA:IEEE, 2008. 1-8.
  • 7Fattal R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3):Article No. 72.
  • 8He K M, Sun J, Tang X O. Single image haze removal using dark channel prior. In:Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA:IEEE, 2009. 1956-1963.
  • 9He K M, Sun J, Tang X O. Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6):1397-1409.
  • 10Pang J H, Au O C, Guo Z. Improved single image dehazing using guided filter. In:Proceedings of the 2011 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Xi'an, China:Asia-Pacific Signal and Information Processing Association, Hong Kong, 2011. 522-525.

共引文献148

同被引文献36

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部