摘要
为提升服装款式图领型识别精度,提出一种基于Mask R-CNN神经网络的服装款式图领型定位与识别方法。建立共1800张包含无领、立领、翻领与驳领4种领型的款式图样本库,利用迁移学习与Mask R-CNN神经网络实现领型定位与识别。结果表明,4种领型的平均识别精确度高于98%,测试集平均精确度达到99.2%,mAP值达到90%。该识别方法可以减少样板生成中的人工失误,为数字化样板生成提供参考。
In order to improve the recognition accuracy of collar flat,this paper proposed a fine-grained localization and recognition method of garment collar based on Mask R-CNN neural network.A database of 1800 images which contained collarless,lapel,turndown collar and stand collar,was created.Transfer learning and Mask R-CNN neural network were used to realize collar location and recognition.The results showed that the average recognition accuracy of four collar types were higher than 98%.The average accuracy of the test set and m AP were reached to 99.2%and 90%respectively.The recognition method can reduce the manual errors in the pattern generation,and provide a reference for the digital pattern generation.
作者
黄振华
李涛
蒋玉萍
杜磊
HUANG Zhenhua;LI Tao;JIANG Yuping;DU Lei(Key Laboratory of Silk Culture Heritage and Products Design Digital Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China;Clothing Engineering Research Center of Zhejiang Province,Zhejiang Sci-Tech University,Hangzhou 310018,China;Zhejiang Provincial Engineering Laboratory of Clothing Digital Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处
《服装学报》
CAS
2021年第1期36-41,共6页
Journal of Clothing Research
基金
文化和旅游部重点实验室开放基金项目(2020WLB09)
国家级大学生创新创业训练计划项目(201910338011)
浙江省教育厅一般科研项目(Y201840287)
浙江省服装工程技术研究中心开放基金项目(2018FZKF13)。