期刊文献+

基于Bug2和角度优先的多AUV围捕策略 被引量:2

Multiple AUV Capture Strategy Based on BUG2 and Angle Priority
下载PDF
导出
摘要 水下围捕活动是多自主水下机器人研究的重点和难点。由于水下光照不足和水流波动影响,导致周遭环境变化不定,环境地图识别困难。为此,提出基于Bug2和角度优先的多AUV围捕策略。利用Bug2算法实现路径规划,通过自主水下机器人的传感器获取周遭环境信息,实现最短直线游动或紧贴障碍的沿边游动;采用角度优先的围捕策略解决猎物逃离问题,其以自身速度为参考,设置一定角度来保证及时封堵猎物的逃离路线。经仿真验证:此算法完成了有/无障碍下的围捕,并分析了其围捕效率的影响因素。 Underwater roundup has always been the key and difficult point in the research of underwater multi-autonomous robot,and due to the lack of light under the sea and the influence of water flow fluctuation,it is easy to cause the difficulty of environmental map identification and the uncertainty of the surrounding environment.In view of these difficulties,this paper will adopt the simplest and most efficient Bug2 algorithm to realize path planning.It can use AUV’s sensors,such as sonar,to obtain environmental information and realize the shortest straight line swim straight to the goal or the edge swim close to the obstacle.As for the problem of rounding up,it mainly solves the problem of target escaping in the round up,and the principle of angle priority can effectively prevent this kind of problem.It takes its own speed as a reference and sets a certain angle to ensure that the escape route of the target can be blocked in time,so as to achieve successful roundup.Finally,the Java platform simulation is used to verify the feasibility of the algorithm,and the experimental results are given.
作者 陈世健 陈宏 丁贺 范智艺 巩伟杰 Chen Shijian;Chen Hong;Ding He;Fan zhiyi;Gong Weijie(School of Mechanical and Control Engineering,Shenzhen University,Shenzhen 518060,China)
出处 《自动化与信息工程》 2021年第1期18-21,共4页 Automation & Information Engineering
关键词 自主水下机器人 Bug2算法 角度优先 AUV Bug2 algorithm angle priority
  • 相关文献

参考文献4

二级参考文献21

  • 1曹志强,张斌,王硕,谭民.未知环境中多移动机器人协作围捕的研究(英文)[J].自动化学报,2003,29(4):536-543. 被引量:13
  • 2刘成良,张凯,付庄,曹其新,殷跃红.神经网络在机器人路径规划中的应用研究[J].机器人,2001,23(S1):605-608. 被引量:11
  • 3李淑琴,王欢,李伟,杨静宇.基于动态角色的多移动目标围捕问题算法研究[J].系统仿真学报,2006,18(2):362-365. 被引量:12
  • 4Yamaguchi H. A cooperative hunting behavior by mobile-robot troops[J]. International Journal of Robotics Research, 1999, 18(9): 931-940.
  • 5Denzinger J, Funchs M. Experiments in learning prototypical situations for variants of the pursuit game[A]. Victor L. Proceedings of the 2nd International Conference on Multi-Agent Systems[C]. Kyoto: MIT Press, 1996. 48-55.
  • 6Osawa E. A metalevel coordination strategy for reactive cooperative planning[A]. Victor L. Proceeding of the First International Conference on Multi-Agent Systems[C]. Menlo Park, California: MIT Press, 1995. 297-303.
  • 7Caroline C, Craig B. The dynamics of reinforcement learning in cooperative multiagent systems[A]. Proceeding of the Fifteenth National Conference on Artificial Intelligence[C]. Madison: AAAI/MIT Press, 1998. 746-752.
  • 8Maja J M. Reinforcement learning in the multi-robot domain[J]. Autonomous Robots, 1997, 4: 73-83.
  • 9Danil V, Donald C. Adaptive critic designs[J]. IEEE Transactions on Neural Networks, 1997, 8(5): 997-1007.
  • 10Hu Junling, Wellman M P. Online learning about other agents in a dynamic multiagent system[Z]. The Second International Conference on Autonomous Agents, Minneapolis, MN, 1998.

共引文献36

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部