期刊文献+

二维动态网格压缩波束形成声源识别方法 被引量:4

Two-dimensional Dynamic Grid Compressive Beamforming for Acoustic Source Identification
原文传递
导出
摘要 基于平面传声器阵列测量和固定网格的传统二维压缩波束形成通过建立阵列传声器测量声压信号和假想声源网格点未知源强之间的欠定线性方程组,基于主声源通常为稀疏分布这一事实,利用稀疏促进算法求解上述方程组从而获得声源波达方向和源强的准确估计,进而准确识别声源。然而,当声源波达方向与网格点不一致、即发生基不匹配时,性能会劣化。为克服该问题,提出二维动态网格压缩波束形成声源识别方法。定义网格坐标和源强分布矢量为变量并采用对数求和罚函数构建目标函数以促进解的稀疏性;基于优化最小化框架在目标函数的基础上构造合适的替代函数以降低优化复杂度;通过梯度下降法对替代函数进行迭代优化求解,从而使网格坐标和源强分布矢量逐渐收敛至真实值附近。仿真和试验均表明,相较于传统固定网格的二维压缩波束形成,该方法能够克服基不匹配问题、获得更高的定位精度和量化精度;该方法能够适用于传声器随机分布的平面阵列,且无需先验的信噪比(噪声干扰)及声源稀疏度等信息,即使在传声器数量较少的情况下也能得到低污染高分辨率的声源成像,保证了高精度的二维波达方向估计和源强量化。 Conventional two-dimensional compressive beamforming,which is based on planar microphone array measurements and fixed discrete grids,establishes an underdetermined linear system of equations between the sound pressure signals measured by microphones and the unknown source strengths of the assuming acoustic sources corresponding to grids.Based on the fact that the main sources are generally sparse,the above equations can be solved by the sparsity promotion algorithms,then accurate estimation of the source direction-of-arrivals(DOAs)and quantification of the source strengths are achieved,thus identifying sources accurately.However,its performance deteriorates when sources do not coincide with the grids,namely the basis mismatch occurs.To solve this issue,a two-dimensional dynamic grid compressive beamforming for acoustic source identification is developed.First,the grid coordinates and the source strength distribution vector are defined as variables,and the objective function is constructed using a log-sum penalty function to promote the sparsity of the solution.Subsequently,a suitable surrogate function is formulated based on the objective function to reduce the optimization complexity under the majorization-minimization framework.Finally,a gradient descent method is used to iteratively optimize the surrogate function,leading to a gradual process to refine the grid coordinates and the source strength distribution vector.The results of numerical simulations and experiments demonstrate that the proposed technology can circumvent the basis mismatch and thus achieve higher location and quantification accuracy,comparing to the conventional two-dimensional fix-grid approach.It can be applied to a planar array with microphones randomly distributing and does not require prior knowledge of signal-to-noise ratio(noise interference)or source sparsity.The dynamic grid compressive beamforming can provide high-resolution and low contamination imaging,allowing accurate estimation of two-dimensional DOAs and quantification of source strengths,even with a small number of microphones.
作者 樊小鹏 余立超 褚志刚 杨洋 李丽 FAN Xiaopeng;YU Lichao;CHU Zhigang;YANG Yang;LI Li(Electric Power Research Institute of Guangdong Power Grid Limited Liability Corporation,Guangzhou 510082;State Key Laboratory of Mechanical Transmissions,Chongqing University,Chongqing 400044;College of Automotive Engineering,Chongqing University,Chongqing 400044)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2020年第22期46-55,共10页 Journal of Mechanical Engineering
基金 国家自然科学基金(11874096,11704040) 中国南方电网科技(GDKJXM20180152)资助项目。
关键词 压缩波束形成 动态网格 平面传声器阵列 声源识别 波达方向 compressive beamforming dynamic grid planar microphone array sound source identification direction-of-arrival
  • 相关文献

参考文献3

二级参考文献27

  • 1宋雷鸣,孙守光,张新华.一种改善beamforming“延迟求和”算法精度的方法[J].电子测量与仪器学报,2007,21(5):40-44. 被引量:3
  • 2LEE C, LEE J H. Robust adaptive array beamforming under steering vector[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(1): 168-175.
  • 3HALD J. Combined NAH and beamforming using the same microphone array[J]. Sound and Vibration, 2004, 38(12): 18-25.
  • 4BROOKS T F, HUMPHREYS W M. A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays[J]. Journal of Sound and Vibration, 2006, 294(4-5): 856-879.
  • 5FLEURY V, BULTI J. Extension of deconvolution algorithms for the mapping of moving acoustic sources[J] J. Acoust. Soc. Am, 2011, 129(3): 1417-1428.
  • 6GAUTHIER P A, CAMIER C, PASCO Y, et al. Beamforming regularization matrix and inverse problems applied to sound field measurement and extrapolation using microphone array[J]. Journal of Sound and Vibration, 2011, 330(24): 5852-5877.
  • 7SUZUKI T. L1 generalized inverse beam-forming algorithm resolving coherent/incoherent, distributed and multipole sources[J]. Journal of Sound and Vibration, 2011, 330(24): 5835-5851.
  • 8DOUGHERTY R P. Functional beamforming for aeroacoustic source distributions[C]// The 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, United States, June 16-20, 2014: 1-18.
  • 9CALVETTI D, MORIGI S, REICHEL L, et al. Tikhonov regularization and the L-curve for large discrete ill-posed problems[J]. Journal of Computational and Applied Mathematics, 2000, 123(1-2): 423-446.
  • 10FLAVIO P, PAULO Z, GUNTHER S, et al. Acoustic source identification using a generalized weighted inverse beamforming technique[J]. Mechanical Systems and Signal Processing, 2012, 32(10): 349-358.

共引文献31

同被引文献45

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部