期刊文献+

Adaptive Secure Transmission for Wireless Powered Communication Networks 被引量:1

下载PDF
导出
摘要 This paper investigates secure transmission in a wireless powered communication network(WPCN)with an energy harvesting(EH)source configured with multiple antennas.In the WPCN,the EH source harvests energy from the radio frequency(RF)signals broadcasted by a power beacon(PB),and purely relies on the harvested energy to communicate with the destination in the presence of passive eavesdroppers.It is noteworthy that the RF-EH source is equipped with a finite energy storage to accumulate the harvested energy for the future usage.Moreover,due to energy-constraint and complexitylimitation,the multi-antenna source is only configured with a single RF-chain.To enhance the security for the WPCN,we propose two adaptive transmission schemes,i.e.,energy-aware transmit antenna selection(EATAS)and energy-aware differential spatial modulation(EADSM).According to the energy status and the channel quality,the source adaptively decides whether to transmit confidential information or harvest RF energy.To evaluate the secrecy performance of the proposed schemes,we first study the evolution of the energy storage,and then derive the analytical expressions of connection outage probability(COP),secrecy outage probability(SOP)and efficient secrecy throughput(EST).Numerical results demonstrate that our proposed schemes outperform the existing schemes,i.e.,time-switching based TAS(TS-TAS)Received:May 19,2020 Revised:Sep.13,2020 Editor:Deli Qiao and accumulate-then-transmit(ATT).And,increasing the transmit power of the PB or the capacity of the source’s energy storage is helpful to improve the secrecy performance.Moreover,there exists an optimal transmission rate for each proposed scheme to achieve best secrecy performance.
出处 《China Communications》 SCIE CSCD 2021年第3期155-173,共19页 中国通信(英文版)
基金 supported in part by the National Science Foundations of China under Grant 61801496 and 61801497 the Defense Science Foundations of China under Grant 2019-JCJQ-JJ-221 the National University of Defense Technology Youth Innovation Award Research Project under Grant 23200306。
  • 相关文献

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部