期刊文献+

基于高斯差分特征网络的显著目标检测 被引量:2

Salient object detection based on difference of Gaussian feature network
下载PDF
导出
摘要 中心-邻域对比度理论作为具有生理学依据的一种线索,在传统显著性检测模型中获得了广泛应用,然而该理论却很少显式地应用在基于深度卷积神经网络(CNN)的模型中。为了将经典的中心-邻域对比度理论引入深度卷积网络中,提出了一种基于高斯差分(Do G)特征网络的显著目标检测模型。首先通过在多个尺度的深度特征上构造高斯差分金字塔(DGP)结构以感知图像中显著目标的局部突出特性,进而用所得到的差分特征对语义信息丰富的深度特征进行加权选择,最终实现对显著目标的准确提取。进一步地,在提出的网络设计中采用标准的一维卷积来实现高斯平滑过程,从而在降低计算复杂度的同时实现了网络端到端的训练。通过把所提模型与六种显著目标检测算法在四个公用数据集上的实验结果进行对比,可知所提模型取得的结果在平均绝对误差(MAE)和最大F度量值的定量评价中均取得了最优表现,尤其是在DUTS-TE数据集上所提模型取得的结果的最大F度量值和平均绝对误差分别达到了0.885和0.039。实验结果表明,所提模型在复杂自然场景中对于显著目标具有良好的检测性能。 As a clue with physiological basis,the center-surround contrast theory has been widely used in traditional saliency detection models.However,this theory is rarely applied to models based on deep Convolutional Neural Network(CNN)explicitly.In order to introduce the classic center-surround contrast theory into deep CNN,a salient object detection model based on Difference of Gaussian(DoG)feature network was proposed.Firstly,a Difference of Gaussian Pyramid(DGP)structure was constructed on the deep features of multiple scales to perceive the local prominent features of salient object in an image.Then,the obtained differential feature were used to perform weighted selection to the deep features with rich semantic information.Finally,the accurate extraction of the salient object was realized.In addition,the Gaussian smoothing process was implemented by using standard one-dimensional convolution in the proposed network design,so as to reduce the computational complexity and realize the end-to-end training of the network at the same time.Through comparison of the proposed model and six salient object detection algorithms on four public datasets,it can be seen that the results obtained by the proposed model achieve the best performance in the quantitative evaluation of Mean Absolute Error(MAE)and maximum F-measure.Especially on the DUTS-TE dataset the maximum F-measure and the mean absolute error of the results of the proposed model reach 0.885 and 0.039 respectively.Experimental results show that the proposed model has good detection performance for salient objects in complex natural scenes.
作者 后云龙 朱磊 陈琴 吕燧栋 HOU Yunlong;ZHU Lei;CHEN Qin;LYU Suidong(School of Information Science and Engineering,Wuhan University of Science and Technology,Wuhan Hubei 430081,China;Wuhan Iron and Steel Design and Research Institute(WISDRI)Engineering and Research Incorporation Limited,Wuhan Hubei 430223,China)
出处 《计算机应用》 CSCD 北大核心 2021年第3期706-713,共8页 journal of Computer Applications
基金 国家自然科学基金青年项目(61502358)。
关键词 显著目标检测 高斯差分金字塔 中心-邻域对比度 特征融合 卷积神经网络 salient object detection Difference of Gaussian Pyramid(DGP) Center-Surround Contrast(CSC) feature fusion Convolutional Neural Network(CNN)
  • 相关文献

参考文献2

二级参考文献22

  • 1HAYKINS.神经网络与机器学习[M].3版.申富饶,徐烨,郑俊,译.北京:机械工业出版社,2011:237.
  • 2ALEX K,ILYA S,HINTON G E.ImageNet classification with deep convolutional neural networks[EB/OL].[2015-02-10].http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.
  • 3DAN C,UELI M,JURGEN S.Multi-column deep neural networks for image classification[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2012:3642-3649.
  • 4KAVUKCUOGLU K,SERMANET P,BOUREAU Y,et al.Learning convolutional feature hierarchies for visual recognition[EB/OL].[2015-02-10].http://cs.nyu.edu/-ylan/files/publi/koray-nips-10.pdf.
  • 5KAVUKCUOGLU K,RABZATO M,FERGUS R,et al.Learning invariant features through topographic filter maps[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2009:1605-1612.
  • 6COATES A,LEE H,NG A Y.An analysis of single-layer networks in unsupervised feature learning[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics.Piscataway,NJ:IEEE,2011:215-223.
  • 7ZEILER M D,FERGUS,R.Visualizing and understanding convolutional neural networks[C]//ECCV 2014:Proceedings of the 13th European Conference on Computer Vision.Berlin:Springer,2014:818-833.
  • 8BALDI P,LU ZHIQIN.Complex-valued autoencoders[J].Neural Networks,2012,33:136-147.
  • 9LECUN Y,BOTTOU L,BENGIO Y.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
  • 10DERMANET P,LECUN Y.Traffic sign recognition with multi-scale convolutional networks[C]//Proceedings of the 2011 International Joint Conference on Neural Networks.Piscataway,NJ:IEEE,2011:2809-2813.

共引文献90

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部