摘要
通过对幂零矩阵的性质进行再探讨,得到了其转置矩阵、伴随矩阵等行列式也是零的结论,同时推广了k-幂零矩阵的性质,并对一些结论用不同的方法给予了证明.
Through further exploration the properties of nilpotent matrix,it can be concluded that the determinant of transition matrix,adjoint matrix and etc.is zero.Meanwhile,the properties of k-nilpotent matrix were promoted.And some conclusions of k-nilpotent matrix were proved by different methods.
作者
高瑞
王蝶
GAO Rui;WANG Die(College of Mathematics,Cangzhou Normal University,Cangzhou,Hebei 061001,China;The Road Middle School,Suzhou,Anhui 234223,China)
出处
《沧州师范学院学报》
2021年第1期90-92,118,共4页
Journal of Cangzhou Normal University
关键词
幂零矩阵
若尔当标准型
k-幂零矩阵
幂零线性变换
nilpotent matrix
Jordan’s normal form
k-nilpotent matrix
nilpotent linear transformation