期刊文献+

基于局部序列比对相似度的用户会话聚类新方法

A New User Session Clustering Method Based on Local Sequence Alignment Similarity
下载PDF
导出
摘要 随着网络环境的愈加复杂,用户数量和种类显著增加,网络信息更新频繁。针对文本数据自身较稀疏、不规范等特点,提出了基于改进的局部序列比对算法的用户会话聚类新方法。首先通过计算用户会话集成距离方法衡量会话的相似度;然后,采用改进的基于用户会话距离的序列比对算法对话题进行聚类,该算法改善了传统用户聚类算法的不足。实验表明,该算法较传统聚类算法在召回率和准确率方面有明显改善。 With the increasingly complex network environment,the number and types of users have increased significantly,and network information has been updated frequently.In view of the characteristics of sparse and non-standard text data itself,a new user session clustering method based on improved local sequence alignment algorithm is proposed.Firstly,the similarity of the session is measured by calculating the distance of the user’s session integration;then,an improved sequence alignment algorithm based on the user’s session distance is used to cluster the topics.This algorithm improves the shortcomings of the traditional user clustering algorithm.Compared with the traditional clustering algorithm,experiments show that this algorithm has significantly improved the recall rate and accuracy rate.
作者 姚瑶 周铜 YAO Yao;ZHOU Tong(School of Information Engineering, Zhengzhou University of Technology, Zhengzhou, Henan 450044, China)
出处 《中州大学学报》 2021年第1期114-119,共6页 Journal of Zhongzhou University
基金 河南省科技厅科技攻关项目(182102310982,202102210156)。
关键词 局部序列比对 用户(会话)相似度 聚类 local sequence alignment user(conversation)similarity clustering
  • 相关文献

参考文献6

二级参考文献53

  • 1姚瑶,王战红,石磊.一种基于页面聚类的Web概念化建模新方法[J].微电子学与计算机,2015,32(1):156-160. 被引量:2
  • 2宋江春,沈钧毅.一种新的Web用户群体和URL聚类算法的研究[J].控制与决策,2007,22(3):284-288. 被引量:11
  • 3程舒通.Web点击流的频繁模式聚类算法[J].计算机技术与发展,2007,17(9):18-20. 被引量:3
  • 4Zhang F, Chang H Y. Research and development in web usage mining system-key issues and proposed soluteions: a survey[C]// Proceedings of the First IEEE International Conference on Ma- chine Learning and Cybernetics. 2002:986 990.
  • 5Shahabi C, Zarski A M, Shah J. Knowledge discovery from users web-page navigation[C]ffProc of 7th Int Conf on Research Is- sues in Data Engineering. Birmingham: IEE[Computer Society Press, 1997 : 20-29.
  • 6Fu Y, Sandhu K, Shih i A generalization-based approach to clustering of Web usage sessionEM. Web Usage Analysis and User Profiling. New York: Springer-Verlag, 2000 : 21-38.
  • 7Wang Jun,de Vries A P, Reinders M J T. Unifying user-based and item-based collaborative filtering approaches by similarity fusion[C]// Proceedings of the 29th annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2006 : 501-508.
  • 8Charter K, Schaeffer J, Szafron D. Sequence Alignment using FastLSA[C] // Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Bio- logical Sciences(METMBS' 2000). 2000,6 : 239-245.
  • 9Gtindiiz S, Tamer6zsu M. A Web Page Prediction Model Based on Click-Stream Tree Representation of User Behavior[C]/// Proceedings of the Ninth ACM SIGKDD International Confe- rence on Knowledge Discovery and Data Mining. 2003.
  • 10Ng A Y, Jordan M L,Weiss Y. On spectral clustering:Analysis and an algorithra[M] // Advances in Neural Information Pro- cessing Systems14. MIT Press, 2002 : 849-856.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部