期刊文献+

近邻同步聚类模型与指数衰减加权同步聚类模型的比较与分析

The Comparison and Analysis Between Near NeighborSynchronization Clustering Model and Exponential DecayWeighted Synchronization Clustering Model
下载PDF
导出
摘要 聚类是一种重要的数据分析与预处理技术。与传统的静态聚类分析方法相比,基于同步模型的聚类算法属于一种动态演化的聚类分析技术。先提出了应用到聚类中的两种指数衰减加权同步模型和一种δ近邻指数衰减加权同步模型。对前两种同步模型,提出了基于指数衰减加权同步模型的聚类算法;对后一种同步模型和已发表的扩展Kuramoto模型、Vicsek简化模型及Vicsek模型的一个线性版本,提出了基于近邻同步模型的聚类算法。然后比较分析了这些同步聚类模型的算法复杂度、性质及特点。在人工数据集和8个UCI数据集的仿真实验中,对这几种同步聚类模型在聚类精度、聚类速度等方面进行了适当的比较。最后对基于同步模型的聚类算法的发展进行了总结及展望。 Clustering is an important data analysis and preprocessing technology.Compared with the traditional static clustering analysis methods,the clustering algorithms based on synchronization models are a kind of dynamic evolutionary clustering analysis technique.Two exponential decay weighted synchronization models and aδnear neighbor exponential decay weighted synchronization model for clustering are proposed.For the first two synchronization models,a clustering algorithm based on exponential decay weighted synchronization model is proposed.For the latter synchronization model,the extended Kuramoto model,a Vicsek simplified model,and a linear version of the Vicsek model,a clustering algorithm based on near neighbor synchronization model is proposed.The algorithm complexity,properties,and characteristics of these synchronous clustering models are compared and analyzed.In the simulation experiments of some artificial data set and eight UCI data sets,these synchronization clustering models were compared in clustering accuracy and clustering speed.Finally,it summarizes the development of some synchronization clustering algorithms and presents the trends.
作者 陈新泉 周灵晶 戴家树 周祺 CHEN Xinquan;ZHOU Lingjing;DAI Jiashu;ZHOU Qi(School of Computer and Information,Anhui Polytechnic University,Wuhu,241000,China;Education Union,Anhui Polytechnic University,Wuhu,241000,China)
出处 《安徽工程大学学报》 CAS 2021年第1期32-45,共14页 Journal of Anhui Polytechnic University
基金 国家自然科学基金资助项目(61976005) 安徽省高校自然科学研究基金资助项目(KJ2019ZD15,KJ2019A0158,KJ2020A0362) 安徽省高校协同创新基金资助项目(GXXT-2019-002) 安徽工程大学科研启动计划基金资助项目(2018YQQ031) 重庆市前沿与应用基础研究基金资助项目(CSTC2016JCYJA0521) 重庆三峡学院重大培育基金资助项目(16PY08) 安徽工程大学校级科研基金资助项目(XJKY072019A03)。
关键词 聚类 同步模型 近邻 指数衰减 clustering synchronization model near neighbour exponential decaying
  • 相关文献

参考文献3

二级参考文献66

  • 1[1]Fasulo, D. An analysis of recent work on clustering algorithms. Technical Report, Department of Computer Science and Engineering, University of Washington, 1999. http://www.cs.washington.edu.
  • 2[2]Baraldi, A., Blonda, P. A survey of fuzzy clustering algorithms for pattern recognition. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 1999,29:786~801.
  • 3[3]Keim, D.A., Hinneburg, A. Clustering techniques for large data sets - from the past to the future. Tutorial Notes for ACM SIGKDD 1999 International Conference on Knowledge Discovery and Data Mining. San Diego, CA, ACM, 1999. 141~181.
  • 4[4]McQueen, J. Some methods for classification and Analysis of Multivariate Observations. In: LeCam, L., Neyman, J., eds. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967. 281~297.
  • 5[5]Zhang, T., Ramakrishnan, R., Livny, M. BIRCH: an efficient data clustering method for very large databases. In: Jagadish, H.V., Mumick, I.S., eds. Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. Quebec: ACM Press, 1996. 103~114.
  • 6[6]Guha, S., Rastogi, R., Shim, K. CURE: an efficient clustering algorithm for large databases. In: Haas, L.M., Tiwary, A., eds. Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 73~84.
  • 7[7]Beyer, K.S., Goldstein, J., Ramakrishnan, R., et al. When is 'nearest neighbor' meaningful? In: Beeri, C., Buneman, P., eds. Proceedings of the 7th International Conference on Data Theory, ICDT'99. LNCS1540, Jerusalem, Israel: Springer, 1999. 217~235.
  • 8[8]Ester, M., Kriegel, H.-P., Sander, J., et al. A density-based algorithm for discovering clusters in large spatial databases with noises. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD'96). AAAI Press, 1996. 226~231.
  • 9[9]Ester, M., Kriegel, H.-P., Sander, J., et al. Incremental clustering for mining in a data warehousing environment. In: Gupta, A., Shmueli, O., Widom, J., eds. Proceedings of the 24th International Conference on Very Large Data Bases. New York: Morgan Kaufmann, 1998. 323~333.
  • 10[10]Sander, J., Ester, M., Kriegel, H.-P., et al. Density-Based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 1998,2(2):169~194.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部