期刊文献+

基于FFT和DTFT的指数衰减复正弦信号参数估计算法 被引量:2

PARAMETER ESTIMATION ALGORITHM OF EXPONENTIALLY DECAYING COMPLEX SINUSOIDAL SIGNAL BASED ON FFT AND DTFT
下载PDF
导出
摘要 针对加性高斯白噪声环境中指数衰减复正弦信号频率和衰减因子的估计问题,提出一种结合FFT和DTFT的离散三谱线插值算法。在利用FFT进行频率粗估计基础上,再利用FFT幅度最大谱线及其左右两侧任意相等位置处的DTFT辅助谱线进行频率和衰减因子精估计,并通过迭代提高算法性能。仿真结果表明,当辅助谱线距离幅度最大谱线位置的绝对值小于0.5时,信号实际频率位于FFT两条谱线之间任意位置,算法性能均接近克拉美罗下界,参数估计精度高于同类算法。 In order to estimate the frequency and the decaying factor of the exponentially decaying complex sinusoidal signal,we propose a discrete three spectral lines interpolation algorithm based on FFT and DTFT.After the rough estimation of frequency by FFT,the fine estimation of frequency and damping factor was made by utilizing the FFT spectrum line with maximum amplitude and two auxiliary spectral lines of the DTFT of the signal at any positions symmetrically located on the two sides of the maximum spectrum line.The performance of the algorithm was improved by iteration.The simulation results show that when the absolute value of the difference between discrete frequency index values of two auxiliary lines and the maximum spectral line is less than 0.5,the actual frequency of the signal is located in any position between the two FFT spectral lines,the performance of the algorithm is close to the Cramer-Rao lower bound,and the parameter estimation accuracy is higher than the similar algorithms.
作者 王鸿 刘春华 齐国清 Wang Hong;Liu Chunhua;Qi Guoqing(College of Information Science and Technology,Dalian Maritime University,Dalian 116026,Liaoning,China)
出处 《计算机应用与软件》 北大核心 2021年第3期249-255,共7页 Computer Applications and Software
基金 国家高技术研究发展计划项目(2011AA110201)。
关键词 指数衰减复正弦信号 FFT DTFT 频率估计 衰减因子估计 Exponentially decaying complex sinusoidal signal FFT DTFT Frequency estimation Damping factor estimation
  • 相关文献

参考文献1

二级参考文献12

  • 1RIFE D C, BOORSTYN R R. Single-tone parameter estimation from discrete-time observations[J]. IEEE Transactions on Information Theory, 1974, 120(5): 591-598.
  • 2RIFE D C, VINCENT G A. Use of the discrete Fourier transform in the measurement of frequencies and levels of tones[J]. Bell System Technical Journal, 1970, 49(2): 197-228.
  • 3JAIN V K, COLLINS W L, DAVIS D C. High-accuracy analog measurements via interpolated FFT[J]. IEEE Transactions on Instrumentation and Measurement, 1979, 28(2): 113-122.
  • 4QUINN B G. Estimating frequency by interpolation using Fourier coefficients[J]. IEEE Transactions on Signal Processing, 1994, 42(5): 1264-1268.
  • 5QUINN B G. Estimation of frequency, amplitude and phase from the DFT of a time series [J]. IEEE Transactions on Signal Processing, 1997, 45(3): 814-817.
  • 6JACOBSEN E, KOOTSOOKOS P. Fast, accurate frequency estimators [J]. IEEE Signal Processing Magazine, 2007, 24(3): 123-125.
  • 7CANDAN C. A method for fine resolution frequency estimation from three DFT samples [J]. IEEE Signal Processing Letters, 2011, 18(6): 351-354.
  • 8CANDAN C. Analysis and further improvement of fine resolution frequency estimation method from three DFT samples [J]. IEEE Signal Processing Letters, 2013, 20(9): 913-916.
  • 9FANG L, DUAN D, YANG L. A new DFT-based frequency estimator for single-tone complex sinusoidal signals [C]// MILCOM 2012: Proceedings of the 2012 IEEE Military Communications Conference. Piscataway: IEEE, 2012:1-6.
  • 10YANG C, WEI G. A noniterative frequency estimator with rational combination of three spectrum lines[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 5065-5070.

共引文献10

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部