期刊文献+

An accurate a posteriori error estimator for the Steklov eigenvalue problem and its applications

原文传递
导出
摘要 In this paper, a type of accurate a posteriori error estimator is proposed for the Steklov eigenvalue problem based on the complementary approach, which provides an asymptotic exact estimate for the approximate eigenpair. Besides, we design a type of cascadic adaptive finite element method for the Steklov eigenvalue problem based on the proposed a posteriori error estimator. In this new cascadic adaptive scheme, instead of solving the Steklov eigenvalue problem in each adaptive space directly, we only need to do some smoothing steps for linearized boundary value problems on a series of adaptive spaces and solve some Steklov eigenvalue problems on a low dimensional space. Furthermore, the proposed a posteriori error estimator provides the way to refine meshes and control the number of smoothing steps for the cascadic adaptive method. Some numerical examples are presented to validate the efficiency of the algorithm in this paper.
出处 《Science China Mathematics》 SCIE CSCD 2021年第3期623-638,共16页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11801021 and 11571027) Foundation for Fundamental Research of Beijing University of Technology(Grant No.006000546318504) International Research Cooperation Seed Fund of Beijing University of Technology(Grant No.2018B32)。
  • 相关文献

参考文献4

二级参考文献6

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部