期刊文献+

改进果蝇算法优化加权极限学习机的入侵检测 被引量:8

An Intrusion Detection Algorithm Based on IFOA and WELM
下载PDF
导出
摘要 提出一种改进的果蝇算法优化加权极限学习机入侵检测算法,利用加权极限学习机训练时间短、泛化性能好等优点,对NSL-KDD入侵检测数据集中的不均衡现象,增加少数类攻击的权重,使对网络攻击中稀有攻击的检测率比传统机器学习方法有大幅提高;用迭代步长自适应调整的果蝇优化算法,对加权极限学习机中的隐含层输入权值和偏置进行全局寻优,以避免算法陷入局部最优解,实现了对NSL-KDD入侵检测数据集的分类。实验表明:本算法对稀有攻击的检测率和分类准确率均有提高,误报率有所降低。 An intrusion detection algorithm of WELM optimized by IFOA is proposed. The advantages of short training time and good generalization performance of WELM are used, and the weight of minority attacks is increased, so that the recall rate of minority attacks in network attacks is greatly improved.The FOA with adaptive adjustment of the iterative step size is used, so the input weights and bias of the hidden layer in the WELM are globally optimized to avoid the algorithm falling into local optimal solution and realize the classification of the NSL-KDD intrusion detection data set. The experimental results show that the proposed algorithm improves the recall rate of minority attacks and the accuracy of the overall classification, and reduces the false positive rate.
作者 党建武 谭凌 Dang Jianwu;Tan Ling(School of Software and Internet of Things Engineering,Jiangxi University of Finance and Economics,Nanchang 330013,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2021年第2期331-338,共8页 Journal of System Simulation
关键词 入侵检测 不均衡数据集 加权极限学习机 果蝇优化算法 intrusion detection unbalanced data set weighted extreme learning machine fruit fly optimization algorithm
  • 相关文献

参考文献7

二级参考文献89

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:234
  • 2KAVITHA B, KARTHIKEYAN D S, MAYBELL P S. An ensemble design of intrusion detection system for handling uncertainty using neutrosophic logic classifier [ J]. Knowledge-Based Systems, 2012, 28(4) : 88 -96.
  • 3MRUTYUNJAYA P, AJITH A, MANAS R P. A hybrid intelligent approach for network intrusion detection [ J]. Procedia Engineering, 2012,30(1): 1 -9.
  • 4HUWAIDA T E, IZZELDIN M O. Alert correlation in collaborative intelligent intrusion detection systems[ J]. Applied Soft Computing, 2011, 11 (7) : 4349 - 4365.
  • 5BENGIO Y. Learning deep architectures for AI[ J]. Foundations and Trends in Machine Learning, 2009,2(1) : 1 - 127.
  • 6HINTON G E, SALAKHUTDINOV R R. Reducing the dimensional- ity of data with neural networks [ J]. Science, 2006, 313(5786): 504 - 507.
  • 7SALAKHUTDINOV R, HINTON G. An efficient learning procedure for deep Boltzmann machines[J]. Neural Computation, 2012, 24 (8) : 1967 -2006.
  • 8HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications [J]. Neurocomputing, 2006,70(1) :489 - 501.
  • 9KUANG F, XU W, ZHANG S, et al. A novel approach of KPCA and SVM for intrusion detection [ J]. Journal of Computational In- formation Systems, 2012, 8(8) : 3237 - 3244.
  • 10ARYA A, KUMAR S. Information theoretic feature extraction to reduce dimensionality of genetic network programming based intru- sion detection model [ C]// Proceedings of the 2014 International Conference on Issues and Challenges in Intelligent Computing Techniques. Piscataway: IEEE, 2014:34-37.

共引文献76

同被引文献88

引证文献8

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部