期刊文献+

基于“睡美人”文献识别的高校学术论文价值挖掘方法研究——以东北大学为例 被引量:1

Research on Value Mining Method of University Academic Papers Based on the Recognition of“Sleeping Beauty”Documents:Case Study of Northeastern University
下载PDF
导出
摘要 [目的/意义]研究“睡美人”文献的识别方法,对尽早发现重要科技成就及其发明人、加快科技成果转化以及完善学术评价方法等均具有重要意义。[方法/过程]针对高校学术论文成果评价这一特定场景,提出“先客观指标粗筛、后多维参数细选”的研究思路,组合使用K值算法和三指标法,对东北大学发表于Web of Science核心合集的论文样本集进行了“睡美人”文献挖掘的实证研究。[结果/结论]该方法共识别出12篇“睡美人”文献,并对其被引特征、期刊特征、睡眠特征、内容特征等因素进行了分析。实获数据处理结果表明了该方法的有效性,相关研究方法和结果可对东北大学学术论文评价提供重要参考。 [Purpose/significance]Researching on the recognition method of“Sleeping Beauty”documents is of great significance for the early discovery of important scientific and technological achievements and their inventors accelerating the transformation of scientific achievements and improving the academic evaluation methods.[Method/process]Aiming at the specific context of the achievement evaluation of university academic papers the paper proposes a research approach of“sketchily screening objective indexes first carefully selecting multi-dimensional parameters afterwards”.By the combined use of K value algorithm and three metrics method it carries out empirical studies of“Sleeping Beauty”document mining on sample set of papers published on Web of Science Core Collection by Northeast University.[Result/conclusion]With the method proposed,twelve pieces of“Sleeping Beauty”documents are identified of which the citation characteristics journal characteristics sleep characteristics and content features are analyzed.Effectiveness of the method is validated by the processing results of the actual data obtained while related research methods and results can provide important reference for academic papers evaluation of Northeast University.
作者 邹明慧 Zou Minghui(Northeastern University Library Shenyang,Liaoning 110819)
机构地区 东北大学图书馆
出处 《情报探索》 2021年第3期33-41,共9页 Information Research
关键词 “睡美人”文献 K值算法 三指标识别 学术论文 价值挖掘 “Sleeping Beauty”documents K value algorithm three metrics recognition academic papers value mining
  • 相关文献

参考文献5

二级参考文献22

共引文献113

同被引文献27

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部