期刊文献+

相对于余挠对的复形的Tate上同调

Tate Cohomology of Complexes with Respect to Cotorsion Pairs
下载PDF
导出
摘要 设(X,Y)是Abel范畴A中的完备遗传的余挠对.定义了Gorenstein复形范畴G(Y)的Tate余分解,并且给出了相对于G(Y)的Tate上同调的定义,此外,还研究了相对于余挠对(X,Y)的复形的相对上同调和Tate上同调之间的相互关系. Let(X,Y)be a complete and hereditary cotorsion pair in a bicomplete abelian category A.We give definition of Gorenstein category G(Y)of complexes and Tate-coresolution,and the definition of Tate cohomology with respect to G(Y)is given.In addition,we also study the interaction between the corresponding relative and Tate cohomologies of complexes with respect to the cotorsion pairs.
作者 陈早红 杨晓燕 CHEN Zao-hong;YANG Xiao-yan(School of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
出处 《西南师范大学学报(自然科学版)》 CAS 2021年第2期15-20,共6页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11761060).
关键词 余挠对 Tate余分解 Tate上同调 cotorsion pair Tate-coresolution Tate cohomology
  • 相关文献

参考文献3

二级参考文献6

  • 1AUSLANDER M, SOLBERG O. Relative Homology and Representation Theory I. Relative Homology and Homological- ly Finite Subcategories I-J~. Comm Algebra, 1993, 21: 2995-3031.
  • 2TANG Xi. On F-Gorenstein Dimensions l-J}. J Algebra Appl, 2014, 13(6): 1-14.
  • 3ZHAO Guo-qiang, HUANG Zhao-yong. n-Strongly Gorenstein Projective, Injective and Flat Modules [-J~. Comm Alge bra, 2011, 39(8): 3044-3062.
  • 4YANG Xiao yan, LIU Zhong-kui. Strongly Gorenstein Projective, Injetive and Flat Mmodule I-J~. J Algebra, 2008, 320: 2659-2674.
  • 5BENNIS D, MAHDOU N. Strongly Gorenstein Projective, lnjective and Flat Modules EJ~. J Pure Appl Algebra, 2007, 210: 437-445.
  • 6BENNIS D, MAHDOU N. A Generalization of Strongly Gorenstein Projective Modules [-J~. J Algebra Appl, 2009, 8(2) : 219-227.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部