期刊文献+

具有免疫时滞和综合干预措施的流感模型研究 被引量:1

An influenza transmission model with immune delay and comprehensive interventions
下载PDF
导出
摘要 考虑了接种流感疫苗的个体具有确定的免疫期,建立了具有免疫时滞的SEIAR流感模型以探究“媒体、疫苗接种和抗病毒治疗”这三类综合干预措施对流感传播的影响.通过构造Lyapunov函数并依据Routh-Hurwitz判据,分析了模型的无病平衡点和地方病平衡点的稳定性,并给出了模型存在Hopf分支的充分条件. In this paper,we consider that an individual with influenza vaccination has a defined immune period,so we establish an SEIAR influenza model with immune delay and three types of comprehensive interventions including"media,vaccination and antiviral therapy".By constructing the Lyapunov function and the Routh-Hurwitz criterion,the stability of the disease-free equilibrium and the endemic disease equilibrium of the model are analyzed.Furthermore,the sufficient condition for the existence of Hopf bifurcation near the endemic equilibrium is given out.
作者 王晓静 王雪萍 白玉珍 张蒙 Wang Xiaojing;Wang Xueping;Bai Yuzhen;Zhang Meng(School of Science,Beijing University of Civil Engineering and Architecture,Beijing 102616,China)
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2021年第1期108-114,共7页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(11701026,11901027) 北京市自然科学基金(8194058) 北京建筑大学2020年研究生教育教学质量提升项目(J2020015) 北京建筑大学2020基本科研业务费专项资金资助(X20083).
关键词 SEIAR流感模型 LYAPUNOV函数 免疫时滞 稳定性 HOPF分支 SEIAR influenza model Lyapunov function immune delay stability Hopf bifurcation
  • 相关文献

参考文献2

二级参考文献45

  • 1Russell CJ, Webster RG. The genesis of a pandemic influenza virus. Cell ,2005,123 ( 3 ) :368-371.
  • 2Belser JA, Bridges CB, Katz JM. Past, Present, and Possible Future Hu- man Infection with Influenza Virus A Subtype H7. Emerg Infect Dis, 2009,15 ( 6 ) : 859-865.
  • 3World Health Organization. Pandemic ( H1N1 ) 2009-update 112. http ://www. who. int/csr/dort/2010 08 06/en/index. html.
  • 4Lee V J, Lye DC, Wilder-Smith A. Combination strategies for pandemic influenza response-a systematic review of mathematical modeling stud- ies. BMC Medicine,2009,7:76.
  • 5Wu JT, Cowling BJ. The use of mathematical models to inform influen- za pandemic preparedness and response. Exp Biol Med ( Maywood ), 2011,236(8) :955-61.
  • 6Cruz-Pacheco G, Duran L, Esteva L, et al. Modelling of the influenza A ( H1 N1 ) v outbreak in Mexico city, April-May 2009, with control sani- tary measures. EUROSURVEILLANCE ,2009,14 ( 26 ) : 1-3.
  • 7Germann TC, Kadau K, Longini IM Jr, et al. Mitigation strategies for pandemic influenza in the United States. Proc Natl Acad Sci U S A. , 2006,103( 15 ) :5935-40.
  • 8Tracht SM, Valle SYD, Hyman JM. Mathematical Modeling of the Ef- fectiveness of Facemasks in Reducing the Spread of Novel Influenza A (H1N1). PLoSone,2010,5 (2) :1-12.
  • 9Longini IM Jr, Halloran ME, Nizam A, Yang Y. Containing pandemic influenza with antiviral agents. Am J Epidemiol,2004,159 (7) :623-33.
  • 10Arino J,Brauer F, Driessche P van den, et al. Simple models for con- tainment of a pandemic. J. R. Soc. Interface ,2006,3:453-457.

共引文献20

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部