期刊文献+

格上困难问题求解的智能筛选算法及测试

Intelligent sieve algorithms and tests for solving the hard problems on lattice
原文传递
导出
摘要 在总结格密码困难问题发展和求解中关键理论与技术的基础上,从渐进最短向量问题(approx-SVP)入手,对比分析了经典格基约减算法的优缺点,重点研究了其求解推进过程中的关键技术和算法性能瓶颈,归纳了进行格基约减进而求解渐进最短向量问题的一般步骤。在经典的格向量假设基础上,提出了格向量智能筛选模型。通过优化向量选择的路径等方法,设计了基于最优路径分布的智能筛选算法、逆向求解智能验证算法和近似最短向量智能筛选算法三种求解最短向量问题(SVP)的算法,测试结果表明算法在求解格上困难问题上有效。 The key theories and technologies of the hard problems on lattice were combed,and then from the approx-shortest vector problems(approx-SVP),the advantages and disadvantages of the classic reduction algorithms were in-depth comparative analyzed.The key techniques and algorithms in the process of solving propulsion performance bottlenecks were thoroughly studied,and the general steps of basis reduction and approx-SVP were summarized.An intelligent reducing model of approaching the shortest vector was proposed based on the classic hypothesis on lattice. Three variants of hypothesis for solving lattice reduction and the shortest vector problems(SVP) were proposed:intelligent sieving algorithm based on optimal path distribution,intelligent verifying algorithm for reversal solution solving,and intelligent sieving algorithm for the approximately shortest vector. The performance tests show the effectiveness of algorithms.
作者 朱率率 韩益亮 杨晓元 ZHU Shuaishuai;HAN Yiliang;YANG Xiaoyuan(College of Cryptography Engineering,Engineering University of People's Armed Police,Xi'an 710086,China;Key Laboratory of Network and Information Security under the People's Armed Police,Xi'an 710086,China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第2期37-43,共7页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金面上项目(61572521,U1636114) 国家重点研发计划资助项目(2017YFB0802000) 武警工程大学创新团队基金资助项目(KYTD201805) 武警工程大学基础研究基金资助项目(WJY201910)。
关键词 格上困难问题 非确定性多项式完全类 后量子密码 错误向量学习 格基约减 hard problems on lattice non-polynomial complete problem post-quantum cryptography learning with errors basis reduction
  • 相关文献

参考文献2

二级参考文献10

  • 1Oded Regev.On lattices, learning with errors, random linear codes, and cryptography[J].Journal of the ACM (JACM).2009(6)
  • 2Johannes Bl?mer,Stefanie Naewe.Sampling methods for shortest vectors, closest vectors and successive minima[J].Theoretical Computer Science.2009(18)
  • 3Phong Q. Nguyen,Thomas Vidick.Sieve algorithms for the shortest vector problem are practical[J].Journal of Mathematical Cryptology.2008(2)
  • 4Jean-Sebastien Coron,Alexander May.Deterministic Polynomial-Time Equivalence of Computing the RSA Secret Key and Factoring[J].Journal of Cryptology.2007(1)
  • 5Dorit Aharonov,Oded Regev.Lattice problems in NP ∩ coNP[J].Journal of the ACM (JACM).2005(5)
  • 6Subhash Khot.Hardness of approximating the shortest vector problem in lattices[J].Journal of the ACM (JACM).2005(5)
  • 7Phong Q. Nguyen,Igor E. Shparlinski.The Insecurity of the Elliptic Curve Digital Signature Algorithm with Partially Known Nonces[J].Designs Codes and Cryptography.2003(2)
  • 8I. Dinur,G. Kindler,R. Raz,S. Safra.Approximating CVP to Within Almost-Polynomial Factors is NP-Hard[J].COMBINATORICA.2003(2)
  • 9Irit Dinur.Approximating SVP ∞ to within almost-polynomial factors is NP-hard[J].Theoretical Computer Science.2002(1)
  • 10Jin-Yi Cai.A new transference theorem in the geometry of numbers and new bounds for Ajtai’s connection factor[J].Discrete Applied Mathematics.2002(1)

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部