期刊文献+

基于复数据AT特征的SAR图像车辆目标超像素级CFAR方法

A Superpixel-level CFAR Method Based on Complex Data AT Feature for SAR Image Vehicle Target
下载PDF
导出
摘要 根据自然地物和人造地物在单通道合成孔径雷达(SAR)复数据上表现出的实部与虚部统计特性差异,文中提出了一种衡量人造目标(AT)可能性的AT特征,并结合该特征设计一种超像素级恒虚警率(AS-CFAR)检测方法,包括三个步骤:首先,利用简单线性迭代聚类超像素分割算法对SAR图像进行预分割;然后,利用SAR复数据的AT特征从超像素中找出潜在目标超像素和背景超像素;最后,仅对潜在目标超像素进行CFAR检测,且背景区域的选取也参考其AT特征,最大程度保证了背景区域的均匀性。对MiniSAR数据进行实验证明了文中提出的AS-CFAR算法在检测时间和检测目标像素数上的优势。 According to the statistical characteristics'difference between real and imaginary parts of natural and artificial features on the complex data of single-channel synthetic aperture radar(SAR),a feature to measure the possibility of artificial targets(AT)is.proposed,and a superpixel constant false alarm rate detection method(AS-CFAR)is designed based on this feature,which in-cludes three steps.Firstly,the SAR image is pre-segmented by simple linear iterative clustering algorithm.Secondly,using the AT features of SAR complex data from the superpixels to identify potential target superpixels and background superpixels.Finally,only the potential target superpixels are detected by CFAR,and the selection of background area also refers to the AT features,which ensures the homogeneity of background area to the greatest extent.An experiment on MiniSAR data showed the advantages of the proposed AS-CF AR algorithm in terms of detecting time and target pixels.
作者 张楚笛 唐涛 计科峰 ZHANG Chudi;TANG Tao;JI Kefeng(State Key Laboratory of Complex Electromagnetic Environmental Effects on Electronics and Information System,National University of Defense Technology,Changsha 410073,China;College of Electronic Science and Technology,National University of Defense Technology,Changsha 410073,China)
出处 《现代雷达》 CSCD 北大核心 2021年第2期27-34,共8页 Modern Radar
关键词 合成孔径雷达复数据 人造目标特征 恒虚警率 超像素 目标检测 synthetic aperture radar complex data artificial target feature constant false alarm rate superpixel target detection
  • 相关文献

参考文献3

二级参考文献19

  • 1张翠,邹涛,王正志.一种高分辨率SAR图像快速目标检测算法[J].遥感学报,2005,9(1):45-49. 被引量:7
  • 2高贵,蒋咏梅,张琦,匡纲要,李德仁.基于多特征联合的高分辨率SAR图像机动目标快速获取[J].电子学报,2006,34(9):1663-1667. 被引量:10
  • 3Oliver C and Quegan S.Understanding Synthetic Aperture Radar Images,Boston,London,Artech House,1998:277-296.
  • 4Novak L M,Halversen S D,and Owirka G J,et al..Effects of polarization and resolution on SAR ATR.IEEE Trans.on Aerospace and Electronic Systems,1997,33(1):102-116.
  • 5Principe J C,Radisavljevic A,and Fisher J,et al..Target prescreening based on a quadratic gamma discriminator,IEEE Trans.on Aerospace and Electronic Systems,1998,34(3):706-715.
  • 6Himonas S D and Barkat M.Automatic censored CFAR detection for nonhomogeneous environments.IEEE Trans.on Aerospace and Electronic Systems.1992,28(1):286-304
  • 7Smith M E and Varshney P K.Intelligent CFAR processor based on data variability.IEEE Trans.on Aerospace and Electronic Systems,2000,36(3):837-847.
  • 8Eldhuset K. An automatic ship and ship wake detection sys- tem for spaceborne SAR images in coastal region [ J ]. IEEE transactions on Geoscience and remote sensing, 1996,34 (4) :1010-1019.
  • 9Wakerman C C. Automatic ship detection of ships in radar- sat SAR imagery[J. Canadian Journal of Remote Sensing, 2001, 27(5) :372-378.
  • 10Vachon P W. Ship detection by the radarsat SAR: validation of detection model predictions [ J ]. Canadian Journal of Re- mote Sensing, 1997, 23 ( 1 ) :48-59.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部