期刊文献+

氢钨青铜的微波辅助合成

Microwave-assisted synthesis of hydrogen tungsten bronze
下载PDF
导出
摘要 氢钨青铜是一类光学和电学性能都非常优异的应用前景广阔的材料.快速简便的合成方法对其实际应用具有非常重要的意义.通过微波加热辅助合成了单相的立方相氢钨青铜H 0.25 WO_(3),其空间群和晶胞参数分别为Im-3和a=0.7673(1)nm.样品的微观形貌为均匀的片状颗粒,厚度约50 nm,边长约100~200 nm.该纳米钨青铜中W离子为+5和+6混合价态,在近红外光波段(780~2500 nm)展示了明显的吸收峰,近红外光吸收机制应该包括极化子跃迁和局域表面等离子体共振两种模式. Hydrogen tungsten bronzes are a class of materials with excellent optical and electrical properties and have a wide application prospect.The rapid and simple synthesis methods are very important to the practical application of hydrogen tungsten bronzes.In this work,the single-phase cubic hydrogen tungsten bronze H 0.25 WO 3 has been synthesized by microwave-assisted heating method.The space group and lattice parameter are Im-3 and a=0.7673(1)nm,respectively.The micro-morphology of sample shows the uniform disk-shaped particles with about 50 nm thickness and 100-200 nm length.The W ions possess the mixed valence of+5 and+6 and the obvious absorption peak appears in the near-infrared wavelength range(780-2500 nm)for nano hydrogen tungsten bronze H 0.25 WO 3.The near-infrared absorption mechanism of sample should be explained by two ways including polaron transition and localized surface plasmon resonance.
作者 张迎九 郭倩 刘青松 靳森森 谢雨芮 郭娟 梁二军 Zhang Yingjiu;Guo Qian;Liu Qingsong;Jin Sensen;Xie Yurui;Guo Juan;Liang Erjun(School of Physics,Key Laboratory of Material Physics of Ministry of Education,Zhengzhou University,Zhengzhou 450001,China)
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2021年第2期40-45,共6页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(11874328)。
关键词 氢钨青铜 微波辅助合成 近红外吸收 hydrogen tungsten bronze microwave-assisted synthesis near-infrared absorption
  • 相关文献

参考文献3

二级参考文献21

  • 1Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63.
  • 2Zhao Y, Feng Y, Cheng C H, Zhou L, Wu Y, Machi T, Fudamoto Y, Koshizuba N and Murakami M 2001 Appl. Phys. Lett. 79 1154.
  • 3Li Q, Gu G D and Zhu Y 2003 Appl. Phys. Lett. 82 2103.
  • 4Yamada H, Hirakawa M, Kumakura H, Matsumoto A and Kitaguchi H 2004 Appl. Phys. Lett. 84 1728.
  • 5Paranthaman M, Thompson J R and Christen D K 2001 Physica C 355 1.
  • 6Kazakov S M, Puzniak R, Rogacki K, Mironov A V, Zhigadlo N D, Jun J, Soltmann Ch, Batlogg B and Karpinski J 2005 Phys. Rev. B 71 024533.
  • 7Bharathi A, Balaselvi S J, Kalavathi S, Reddy G L N, Sastry V S, Hariharan Y and Radhakrishnan T S 2002 Physica C 370 211.
  • 8Senkowicz B J, Giencke J E, Patnaik S, Eom C B, Hellstrom E E and Larbalestier D C 2005 Appl. Phys. Lett. 86 202502.
  • 9Wilke R H T, Bud'ko S L, Canfield P C, Finnemore D K, Suplinskas R J and Hannahs S T 2004 Phys. Rev. Lett. 92 217003.
  • 10Cheng Z H, Shen B G, Zhang J, Zhang S Y, Zhao T Y and Zhao H W 2002 J. Appl. Phys. 91 7125.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部