期刊文献+

大数据可视分析在海洋领域的应用 被引量:10

Application of big data visual analysis in the marine field
下载PDF
导出
摘要 随着海洋观测技术和数值仿真技术的发展,人们能获取到规模更大、分辨率更高的海洋数据,这为复杂多元海洋环境要素及结构现象的分析带来了机遇,同时也给传统的分析方法带来了挑战。因此,将大数据可视分析方法引入了海洋数据分析,并探索了其在多元海洋时空数据分析、海洋重要结构的时空特征和演化分析等方面的应用价值,开发了多个可视分析系统,并通过全球和我国周边一些海域数据分析的案例研究,提出了海洋数据可视分析的基本框架,展示了可视分析是大数据时代海洋复杂数据分析方面一种很有前途的技术。 With the development of ocean observation technology and numerical simulation technology,larger scale and higher resolution ocean data can be obtained,which brings opportunities for the analysis of complex ocean environmental elements and structures,and also brings great challenges to traditional analysis methods.For this reason,the method of big data visual analysis was introduced and its application value in the analysis of multivariate ocean spatiotemporal data,the spatiotemporal characteristics and evolution analysis of important ocean structures was explored.Some visual analysis systems were developed and the basic framework of visual analysis of ocean data through case studies of data analysis of some sea areas around the world and China was summarized,showing that visual analysis is a promising technology for ocean complex data analysis in the era of big data.
作者 解翠 李明悝 陈萍 李孝天 宋键 董军宇 赵佳萌 XIE Cui;LI Mingkui;CHEN Ping;LI Xiaotian;SONG Jian;DONG Junyu;ZHAO Jiameng(College of Information Science and Engineering,Ocean University of China,Qingdao 266100,China;Key Laboratory of Physics and Oceanography,Ministry of Education,Ocean University of China,Qingdao 266100,China)
出处 《大数据》 2021年第2期3-14,共12页 Big Data Research
基金 国家重点研发计划资助项目(No.2020YFE0201200,No.2019YFC1509100) 国家自然科学基金资助项目(No.41706010,No.U1706218) 山东省自然科学基金资助项目(No.ZR2018ZB0852)。
关键词 可视分析 多元海洋时空数据 海洋结构 可视分析应用 visual analysis multiple ocean temporal and spatial data ocean structure visual analysis application
  • 相关文献

参考文献4

二级参考文献28

  • 1尹劲峰,刘仁义,刘南.SST图像温锋提取算法研究[J].计算机应用研究,2005,22(2):225-226. 被引量:4
  • 2Cayula J F, Comillon P. Edge detection algorithm for sstimages[J]. Journal of Atmospheric and Oceanic Technolo-gy, 1992,9(1):67-80.
  • 3Comillon P. Multi-image edge detection for sst images[J].Journal of Atmospheric and Oceanic Technology, 1995,12(1):821:829.
  • 4Cayula J F, Comillon P,Holyer P, et al. Comparative studyof two recent edge-detection algorithms designed to pro-cess sea-surface temperature fields[J]. IEEE Transactionson Geoscience and Remote Sensing,,1991,29(1):175-177.
  • 5Ullman D S, Comillon P C. Evaluation of front detectionmethods for satellite-derived sst data using in situ observa-tions[J]. Journal of Atmospheric and Oceanic Technology,2000,17(12):1667-1675.
  • 6Miller P. Multi-spectral front maps for automatic detectionof ocean colour features from seawifs[J]. InternationalJournal of Remote Sensing, 2004,25(7-8):1437-1442.
  • 7Diehl S F, Budd J W, Ullman D, et al. Geographic windowsizes applied to remote sensing sea surface temperaturefront detection[J]. Journal of Atmospheric and OceanicTechnology, 2002,19(7): 1105-1113.
  • 8Vazquez D P,Atae-Allah C, Escamilla P L L. Entropic ap-proach to edge detection for sst images[J]. Journal of At-mospheric and Oceanic Technology, 1999,16(7):970-979.
  • 9Shimada T, Sakaida F, Kawamura H,et al. Application ofan edge detection method to satellite images for distin-guishing sea surface temperature fronts near the Japanesecoast[J]. Remote Sensing of Environment, 2005,98(1):21-34.
  • 10Castelao R M,Mavor T P,Barth J A,et al. Sea surfacetemperature fronts in the California current system fromgeostationary satellite observations [J]. Journal of Geo-physical Research Oceans, 2006(111):C09026( 1-13).

共引文献442

同被引文献114

引证文献10

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部