期刊文献+

Area-based non-maximum suppression algorithm for multi-object fault detection 被引量:3

原文传递
导出
摘要 Unmanned aerial vehicle(UAV)photography has become the main power system inspection method;however,automated fault detection remains a major challenge.Conventional algorithms encounter difficulty in processing all the detected objects in the power transmission lines simultaneously.The object detection method involving deep learning provides a new method for fault detection.However,the traditional non-maximum suppression(NMS)algorithm fails to delete redundant annotations when dealing with objects having two labels such as insulators and dampers.In this study,we propose an area-based non-maximum suppression(A-NMS)algorithm to solve the problem of one object having multiple labels.The A-NMS algorithm is used in the fusion stage of cropping detection to detect small objects.Experiments prove that A-NMS and cropping detection achieve a mean average precision and recall of 88.58%and 91.23%,respectively,in case of the aerial image datasets and realize multi-object fault detection in aerial images.
出处 《Frontiers of Optoelectronics》 EI CSCD 2020年第4期425-432,共8页 光电子前沿(英文版)
基金 the National Grid Corporation Headquarters Science and Technology Project:Key Technology Research,Equipment Development and Engineering Demonstration of Artificial Smart Drived Electric Vehicle Smart Travel Service(No.52020118000G).
  • 相关文献

参考文献2

二级参考文献57

  • 1Fercher A F, Briers J D. Flow visualization by means of singleexposure speckle photography. Optics Communications, 1981, 37(5): 326-330.
  • 2Li P, Ni S, Zhang L, Zeng S, Luo Q. Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging. Optics Letters, 2006, 31(12): 1824-1826.
  • 3Luo Z, Yuan Z, Pan Y, Du C. Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging. Optics Letters, 2009, 34(9): 1480-1482.
  • 4Dunn A K. Laser speckle contrast imaging of cerebral blood flow. Annals of Biomedical Engineering, 2012, 40(2): 367-377.
  • 5Parthasarathy A B, Weber E L, Richards L M, Fox D J, Dunn A K. Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study. Journal of Biomedical Optics, 2010, 15(6): 066030.
  • 6Briers J D. Laser doppler and time-varying speckle: a reconciliation. Journal of the Optical Society of America A, 1996, 13(2): 345- 350.
  • 7Boas D A, Dunn A K. Laser speckle contrast imaging in biomedical optics. Journal of Biomedical Optics, 2010, 15(1): 011109.
  • 8Huang Y C, Ringold T L, Nelson J S, Choi B. Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks. Lasers in Surgery and Medicine, 2008,40(3): 167-173.
  • 9Tamaki Y, Araie M, Kawamoto E, Eguchi S, Fujii H. Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon. Investigative Ophthalmology & Visual Science, 1994, 35(11): 3825-3834.
  • 10Sugiyama T, Mashima Y, Yoshioka Y, Oku H, Ikeda T. Effect of unoprostone on topographic and blood flow changes in the ischemic optic nerve head of rabbits. Archives of Ophthalmology, 2009, 127 (4): 454-459.

共引文献2

同被引文献24

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部