期刊文献+

Infinite Frobenius Groups Generated by Elements of Order 3

原文传递
导出
摘要 A semidirect product G=F⋋H of groups F and H is called a Frobenius group if the following two conditions are satisfied:(F1)H acts freely on F,that is,fh=f for f in F and h in H only if^(h)=1 or f=1.(F2)Every non-identity element h∈H of finite order n induces in F by conjugation in G a splitting automorphism,that is,ff^(h)⋯fh^(n−1)=1 for every f∈F;in other words,the order of f^(h−1)is equal to n.We describe the normal structure of a Frobenius group with periodic subgroup H generated by elements of order 3.
出处 《Algebra Colloquium》 SCIE CSCD 2020年第4期741-748,共8页 代数集刊(英文版)
基金 The work was supported by the Program of Fundamental Research of the SB RAS no.1.1.1(project no.0314-2019-0001).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部