期刊文献+

电子芯片冷却用微通道热沉的场协同耗散优化分析 被引量:2

Optimization analysis of field synergy principle and entransy dissipation of microchannel heat sink for electronic chip cooling
原文传递
导出
摘要 采用CFD共轭传热数值模拟技术,获得层流状态下的平直微通道热沉、叶脉状微通道热沉、蜘蛛网状微通道热沉的温度场、速度场和压力场,研究在相同热功率下的不同拓扑结构微通道热沉的传热性能,并结合场协同理论与耗散热学理论对3种不同结构的冷却效果进行综合比较,为微电子器件散热优化提供参考。结果表明:在相同入口质量流率时,蜘蛛网微通道的最高温度(Tmax)最低,努赛尔数(Nu)最大,传热协同角θ最小,耗散值(E)最小,具有理想的传热性能。 The temperature field, velocity field and pressure field of the flat microchannel heat sink, the vein-shaped microchannel heat sink, and the spider web-shaped microchannel heat sink in the laminar flow state was obtained by using CFD conjugate heat transfer numerical simulation technology. The heat transfer performance of micro-channel heat sinks with different structures was compared with each other based on field synergy principle and entransy dissipation theory under the same thermal power conditions, which provides a theoretical basis for heat dissipation optimization of microelectronic devices. The results show that the spider web microchannel have the best heat transfer performance at the same inlet mass flow rate condition with the lowest maximum temperature Tmax, the largest Nusselt number,the smallest heat transfer synergy angle θ, and the smallest entransy dissipation number E.
作者 李萌 云和明 耿文广 于仓仓 贾兴龙 LI Meng;YUN He-ming;GENG Wen-guang;YU Cang-cang;JIA Xing-long
出处 《节能》 2020年第12期9-15,共7页 Energy Conservation
关键词 数值模拟 场协同 耗散理论 拓扑结构 微通道热沉 numerical simulation field synergy entransy dissipation theory topological structure microchannel heat sink
  • 相关文献

参考文献2

二级参考文献25

  • 1TUCKERMAN D B, PEASE R F W. High-perfor-mance heat sinking for VLSI[J].IEEE Electron Dev Lett, 1981 ,ELD-2(5): 126- 129.
  • 2PENG X F, PETERSON G P, Convective heat transfer and flow friction for water flow in microchannel structures[ J]. Int J Heat Mass Transfer, 1996,39(12) :2599 - 2608.
  • 3LI Z X, DUD X, GUO Z Y, Experimental study on flow characteristics of liquid in circular microtubes [J] .Microscale Thermophysical Engineering,2003,7(3):253 - 265.
  • 4WU H Y, CHENG P. An experimental study of convective heat transfer in silicon microchannels with different surface conditions[ J]. Int J Heat Mass Transfer,2003,46(14) :2547 - 2556.
  • 5QU W L,MALA G M ,LID Q.Heat transfer for water flow in trapezoidal silicon microchannels [ J ].Int J Heat Mass Transfer, 2000, 43 (21) :3925 - 3936.
  • 6WU H Y, CHENG P. Friction factors in smooth trapezoidal silicon microcharmels with different aspect ratios[ J]. Int J Heat Mass Transfer, 2003,46(14) :2519 - 2525.
  • 7QU W L,MUDAWAR I.Analysis of three-dimensional heat transfer in micro-channel heat sinks[ J ]. Int J Heat and Mass Transfer, 2002,45 (19) : 3973 - 3985.
  • 8LI Z, TAO W Q, HE Y L. A numerical study of laminar convective heat transfer in roicrochannel with non-circular cross section[J]. Int J Thermal Sci,2006,45(12) :1140- 1148.
  • 9Han J C,Dutta S,Ekkad S.Gas turbine heat transfer and cooling technology[M].2nd ed.London:CRC Press,2012.
  • 10Taslim M E,Bakhtari K,Liu H.Experimental and numerical investigation of impingement on a rib-roughened leading-edge wall[J].Journal of Turbomachinery,2003,125(4):682-691.

共引文献5

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部