期刊文献+

基于深度学习的三维空间的人体行为图像扫描算法研究

Research on scanning algorithm of human behavior image in 3D space based on deep learning
下载PDF
导出
摘要 为提高人体行为图像中识别分辨精准度,提出基于深度学习设计的一种三维空间的人体行为图像扫描算法.采用颜色-深度物体识别技术获取三维空间物体上的数据并判别,结合深度卷积神经网络算法处理数据及寻找数据特征,为解决输出的图像在一定程度上存在失真的问题,提出改进的单层卷积神经网络-空间金字塔池化层-递归神经网络算法,即利用空间金字塔池化层代替卷积神经网络中的池化层,直接对图像的卷积特征池化,使得识别系统设计简单并且不需要重构三维目标的三维模型,以完成人体行为图像扫描识别.仿真实验结果表明,算法可有效对三维空间中人体行为图像数据挖掘,数据特征平均分辨率达到93.7%,识别准确率达到了90.8%,具有一定的应用价值. In order to improve the accuracy of recognition in human behavior image,a scanning algorithm of human behavior image in 3D space based on deep learning is proposed.The color-depth object recognition technology is used to obtain the data from 3D space object,and the depth convolution neural network algorithm is used to process the data and find the data features.In order to solve the problem of output image distortion,this paper proposes an improved single-layer convolution neural network-space pyramid pooling layer-recurrent neural network algorithm,which uses the inner layer of the spatial pyramid pooling layer replace the pooling layer of the convolutional neural network to complete the scanning and recognition of human behavior images.This method directly pools the convolutional features of the image and it makes the design of the recognition system simple and does not need to reconstruct the three-dimensional model of the three-dimensional target.Simulation results show that the proposed algorithm can effectively mine human behavior images in 3D space with 93.7%average resolution and 90.8%recognition accuracy.The research results have practical certain application value.
作者 陶婧 TAO Jing(School of Public Administration,Wuhu Institute of Technology,Wuhu Anhui 241000)
出处 《宁夏师范学院学报》 2021年第1期61-66,共6页 Journal of Ningxia Normal University
基金 2019年度安徽省职业与成人教育学会科研规划课题(Azcj051) 2019年度安徽高校人文社会科学研究重点项目(SK2019A0846).
关键词 深度学习 三维目标 人体行为 图像处理 卷积神经网络 Deep learning 3D object Human behavior Image processing Convolution neural network
  • 相关文献

参考文献5

二级参考文献75

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 2Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 3Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 4Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 5Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 6Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 7Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.
  • 8LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404.
  • 9LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010.
  • 10Waibe[ A, Hanazawa T, Hinton G, et al. Phoneme recognition using time-delay neural networks[J]. Acoustics, Speech and Signal Processing, IEEF. Transactions on, 1989, 37(3): 328-339.

共引文献619

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部