期刊文献+

Liutex core line and POD analysis on hairpin vortex formation in natural flow transition 被引量:4

原文传递
导出
摘要 In this study,the new method of the vortex core line based on Liutex definition,also known as Liutex core line,is applied to support the hypothesis that the vortex ring is not a part of theΛ-vortex and the formation of the ring-like vortex is formed separately from theΛ-vortex.The proper orthogonal decomposition(POD)is also applied to analyze the Kelvin-VHelmholtz(K-H)instability happening in hairpin ring areas of the flow transition on the flat plate to understand the mechanism of the ring-like vortex formation.The new vortex identification method named modified Liutex-Omega method is efficiently used to visualize and observe the shapes of vortex structures in 3-D.The streamwise vortex structure characteristics can be found in POD mode one as the mean flow.The other POD modes are in stremwise and spanwise structures and have the fluctuation motions,which are induced by K-H instability.Moreover,the result shows that POD modes are in pairs and share the same characteristics such as amplitudes,mode shapes,and time evolutions.The vortex core and POD results confirm that theΛ-vortex is not self-deformed to a hairpin vortex,but the hairpin vortex is formed by the K-H instability during the development of Lambda vortex to hairpin vortex in the boundary layer flow transition.
出处 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第6期1109-1121,共13页 水动力学研究与进展B辑(英文版)
基金 The authors thank the Department of Mathematics of University of Texas at Arlington and Royal Thai Government for the financial support.
  • 相关文献

参考文献9

二级参考文献27

  • 1E A. Davidson, Turbulence: An Introduction for Scientists and Engi- neers (Oxford University Press, Oxford, 2004).
  • 2J. Jeong, and F. Hussain, J. Fluid Mech. 285, 69 (1995).
  • 3L.D. Landau, and E. M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1987), p.14.
  • 4S. K. Robinson, Annu. Rev. Fluid. Mech. 23, 601 (1991).
  • 5A. Perry, and M. Chong, Annu. Rev. Fluid. Mech. 19, 125 (1987).
  • 6J. Zhou, R. J. Adrian, S. Balachandar, and T. Kendall, J. Fluid Mech. 387, 353 (1999).
  • 7J. C. R. Hunt, A. A. Wray, and P. Moin, in Eddies, streams, and conver- gence zones in turbulent flows: Proceedings of the Summer Program (Center for Turbulence Research, 1988), pp. 193-208.
  • 8B. Pierce, P. Moin, and T. Sayadi, Phys Fluids 25, 015102 (2013).
  • 9H. von Helmholtz, Phil. Mag. 33,485 (1867).
  • 10C. Liu, Y, Yatt, and P, Lu, Comput & Ftuids 102,353 (2014).

共引文献184

同被引文献21

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部