期刊文献+

基于自适应加权图像块的广义模糊C均值算法 被引量:2

Generalized Fuzzy C-Means for Image Segmentation Based on Adaptive Weighted Image Patch
原文传递
导出
摘要 广义模糊C均值算法是一种比模糊C均值算法收敛速度更快的算法,然而它在分割灰度图像时对噪声敏感。为了改善其鲁棒性,提出基于图像块的像素灰度值加权的广义模糊C均值算法。该算法利用图像块代替单个像素构建目标函数,图像块内各像素的权重由邻域像素和中心像素空间关系及图像块内各像素灰度关系综合确定。以新目标函数为基础,利用拉格朗日乘子法推导出含图像块形式的隶属度和聚类中心表达式。通过这种方式,将邻域信息融入进聚类进程,提升算法的鲁棒性。利用合成图像和实际图像进行分割实验,结果表明:所提算法具有较强的鲁棒性和良好的分割性能。 Generalized fuzzy C-means algorithm is a faster convergence algorithm than fuzzy C-means algorithm.However,it is sensitive to noise when segmenting gray images.In order to improve its robustness,a generalized fuzzy C-means algorithm based on the weighting of pixel gray value in image patch is proposed.In this algorithm,instead of a single pixel,the image patch is used to construct the objective function.The weight of each pixel in the image patch is determined by the spatial relationship between neighboring pixels and central pixel and the gray relationship of each pixel in the image patch.The expressions of membership and cluster center,in the form of image patch,are derived by using Lagrange multiplier method based on the new objective function.In this way,the neighborhood information is integrated into the clustering process,and then improves the robustness of the algorithm.Segmentation experiments are carried out with a synthetic image and several real images,and the segmentation results show that the proposed algorithm has strong robustness and good segmentation performance.
作者 朱占龙 董建彬 李明亮 郑一博 王远 Zhu Zhanlong;Dong Jianbin;Li Mingliang;Zheng Yibo;Wang Yuan(School of Information Engineering,Heibei GEO University,Shijiazhang,Heibei 050031,China;Hebei Key Laboratory of Optoelectronic Information and Geo-Detection Technology,Heibei GEO Universitiy,Shijiazhuang,Heibei 050031,China;Intelligent Sensor Neticork Engineering Research Center of Hebei Produce,Heibei GEO University,Shijiazhuang,Heibei 050031,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第24期80-89,共10页 Laser & Optoelectronics Progress
基金 河北省高等学校科学技术研究项目(QN2020263,ZD2018212) 河北地质大学博士科研启动基金(BQ201606)。
关键词 图像处理 图像分割 广义模糊C均值 图像块 邻域信息 image processing image segmentation generalized fuzzy C-means image patch neighborhood information
  • 相关文献

参考文献6

二级参考文献60

  • 1杨文明,陈国斌,沈晔湖,刘济林.一种基于分水岭变换的图像分割方案[J].浙江大学学报(工学版),2006,40(9):1503-1506. 被引量:22
  • 2Lindenbaum M, Fischer M, Bruckstein A M. On Gabor contribution to image enhancement. Pattern Recognition, 1994, 27(1): 1-8.
  • 3Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion (Ⅱ). Journal of Numerical Analysis, 1992, 29(3): 845-866.
  • 4Yin L, Yang R, Gabbouj M, Neuvo Y. Weighted median filters: A tutorial. IEEE Trans. Circuits and Systems, 1996, 43(3): 157-192.
  • 5Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In Proc. the Sixth International Conference on Computer Vision, Bombay, India, 1998, pp.839-846.
  • 6Donoho D. De-noising by soft-thresholding. IEEE Trans. Information Theory, 1995, 41(3): 613-627.
  • 7Chambolle A, DeVore R A, Lee N Y, Lucier B J. Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Processing, 1998, 7(1): 319-335.
  • 8Cohen I, Raz S, Malah D. Translation invariant denoising using the minimum description length criterion. Signal Processing, 1999, 75(3): 201-223.
  • 9Portilla J, Strela V, Wainwright M J, Simoncelli E P. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Processing, 2003, 12(11): 1338- 1351.
  • 10Romberg J, Choi H, Baraniuk R G. Bayesian tree-structured wavelet-domain image modeling using hidden Markov models. IEEE Trans. Image Processing, 2001, 10(7): 1056-1068.

共引文献83

同被引文献19

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部