期刊文献+

Analytical solution for the stress field of hierarchical defects:multiscale framework and applications

下载PDF
导出
摘要 Hierarchical defects are defined as adjacent defects at different length scales.Involved are the two scales where the stress field distribution is interrelated.Based on the complex variable method and conformal mapping,a multiscale framework for solving the problems of hierarchical defects is formulated.The separated representations of mapping function,the governing equations of potentials,and the stress field are subsequently obtained.The proposed multiscale framework can be used to solve a variety of simplified engineering problems.The case in point is the analytical solution of a macroscopic elliptic hole with a microscopic circular edge defect.The results indicate that the microscopic defect aggregates the stress concentration on the macroscopic defect and likely leads to global propagation and rupture.Multiple micro-defects have interactive effects on the distribution of the stress field.The level of stress concentration may be reduced by the coalescence of micro-defects.This work provides a unified method to analytically investigate the influence of edge micro-defects within the scope of multiscale hierarchy.The formulated multiscale approach can also be potentially applied to materials with hierarchical defects,such as additive manufacturing and bio-inspired materials.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第2期183-208,共26页 应用数学和力学(英文版)
基金 the National Natural Science Foundation of China(No.51878154) the National Program on Major Research Project of China(No.2016YFC0701301)。
  • 相关文献

参考文献1

二级参考文献29

  • 1Zbang T Y and Li J C M 1992 J. Appl. Phys. 72 2215.
  • 2Zhang T Y and Tong T 1995 J, Appl. Phys. 78 4873.
  • 3Lin I H and Thomson R 1986 Acta Metall. 34 187.
  • 4Long Q W and Liang Y 1984 Acta Phys. Sin. 33 755 (in Chinese).
  • 5Shiue S T 1997 Mater. Chem. Phys. 48 220.
  • 6Zhu T, Li J and Yip S 2004 Phys. Rev. Lett. 93 025503.
  • 7Fang Q H, Liu Y W and Jiang C P 2003 Int. J. Struct. Solids 40 5781.
  • 8Fan T Y, Guo R P and Liu G T 2003 Chin. Phys. 12 1149.
  • 9Jin B, Fang Q H and Liu Y W 2007 Acta Mech. Solida. Sin. 20 50.
  • 10Tanguy D, Razafindrazaka M and Delafosse D 2008 Acta Mater. 56 2441.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部